ABSOLUTE ANABELIAN CUSPIDALIZATIONS
OF PROPER HYPERBOLIC CURVES

SHINICHI MOCHIZUKI

June 2007

ABsTrRACT. In this paper, we develop the theory of “cuspidalizations” of the étale
fundamental group of a proper hyperbolic curve over a finite or nonarchimedean
mixed-characteristic local field. The ultimate goal of this theory is the group-theoretic
reconstruction of the étale fundamental group of an arbitrary open subscheme of the
curve from the étale fundamental group of the full proper curve. We then apply this
theory to show that a certain absolute p-adic version of the Grothendieck Congjec-
ture holds for hyperbolic curves “of Belyi type”. This includes, in particular, affine
hyperbolic curves over a nonarchimedean mixed-characteristic local field which are
defined over a number field and isogenous to a hyperbolic curve of genus zero. Also,
we apply this theory to prove the analogue for proper hyperbolic curves over finite
fields of the version of the Grothendieck Conjecture that was shown in [Tama].
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Introduction

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local of mixed characteristic; let U C X be an open subscheme
of X. Write IIx for the étale fundamental group of X. In this paper, we study
the extent to which the étale fundamental group of U may be group-theoretically
reconstructed from 11 x.

In §1, we show that the abelian portion of the extension of Ilx determined
by the étale fundamental group of U may be group-theoretically reconstructed from
IIx [cf. Theorem 1.16, (iii)], and, moreover, that this construction has certain
remarkable rigidity properties [cf. Propositions 1.15, (i); 2.6, (i)].
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In §2, we show that this abelian portion of the extension is sufficient to recon-
struct [in essence] the multiplicative group of the function field of X [cf. Theorem
2.5, (ii)]. In the case of nonarchimedean [mized-characteristic] local fields, this
already implies various interesting consequences in the context of the absolute an-
abelian geometry studied in [Mzk5]|, [Mzk6], [Mzk8]. In particular, it implies that
the absolute p-adic version of the Grothendieck Conjecture [i.e., an absolute version
of [a certain portion of| the relative result that appears as the main result of [Mzk4]]
holds for hyperbolic curves “of Belyi type” [cf. Definition 2.9; Corollary 2.12]. This
includes, in particular, hyperbolic curves “of strictly Belyi type”, i.e., affine hy-
perbolic curves over a nonarchimedean [mixed-characteristic| local field which are
defined over a number field and isogenous to a hyperbolic curve of genus zero. In
particular, we obtain a new countable class of “absolute curves” [in the terminology
of [Mzk6]], whose absoluteness is, in certain respects, reminiscent of the absolute-
ness of the canonical curves of p-adic Teichmiiller theory discussed in [Mzk6] |cf.
Remark 2.13.1], but [in contrast to the class of canonical curves| appears [at least
from the point of view of certain circumstantial evidence| unlikely to be Zariski
dense in most moduli spaces [cf. Remark 2.13.2].

Finally, in §3, we apply the theory of the weight filtration [cf., e.g., [Kane],
[Mtm]], together with various generalities concerning free Lie algebras [cf. the
Appendix], to develop various “higher order generalizations” of the theory of §1, 2.
In particular, we obtain various “higher order generalizations” of the “remarkable
rigidity” referred to above [cf. Propositions 3.7, 3.9, especially Proposition 3.9,
(iii)], which we apply to show that, relative to the notation introduced above, the
geometrically pro-l portion [where [ is a prime number invertible in k] of the étale
fundamental group of U may be recovered from Ilx, at least when U is obtained
from X by removing a single k-rational point [cf. Theorem 3.10]. This, along with
the theory of §2, allows one to verify the analogue for proper hyperbolic curves over
finite fields of the version of the Grothendieck Conjecture that was shown in [Tamal]
[cf. Theorem 3.12].
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Section 0: Notations and Conventions

Numbers:

We shall denote by Z the profinite completion of the additive group of rational
integers Z. If p is a prime number, then Z, denotes the ring of p-adic integers;
Q, denotes its quotient field. We shall refer to as a p-adic local field (respectively,
nonarchimedean local field) any finite field extension of Q, (respectively, a p-adic
local field, for some p). A number field is defined to be a finite extension of the field
of rational numbers. If ¥ is a set of prime numbers, then we shall refer to a positive
integer each of whose prime factors belongs to ¥ as a Y-integer. We shall refer to a
finite étale covering of schemes whose degree is a Y-integer as a X -covering. Also,
we shall write Primes for the set of all prime numbers.

Topological Groups:

Let G be a Hausdorff topological group, and H C G a closed subgroup. Let us
write

Gab

for the abelianization of G li.e., the quotient of G by the closed subgroup of G
topologically generated by the commutators of G]. Let us write

Zae(H) ¥ {geG|g-h=h-g, VheH}

for the centralizer of H in G,

NeH)E {geG|g-H-g' = H}

for the normalizer of H in G; and

Ca(H) d:ef{gEG | (g~H-g_1)ﬂH has finite index in H, g- H - g~ '}

for the commensurator of H in G. Note that: (i) Zg(H), Ng(H) and Cg(H) are
subgroups of G (ii) we have inclusions

H, Zg(H) C Ng(H) C Cg(H)

and (iii) H is normal in Ng(H). If H = Ng(H) (respectively, H = C(H)), then
we shall say that H is normally terminal (respectively, commensurably terminal) in
G. Note that Zg(H), Ng(H) are always closed in G, while C(H ) is not necessarily
closed in G.

If Gy, G2 are Hausdorff topological groups, then an outer homomorphism
G1 — G5 is defined to be an equivalence class of continuous homomorphisms
G1 — (g, where two such homomorphisms are considered equivalent if they differ
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by composition with an inner automorphism of G5. The group of outer automor-
phisms of G [i.e., bijective bicontinuous outer homomorphisms G — G| will be
denoted Out(G). If G is center-free, then there is a natural exact sequence:

1— G — Aut(G) — Out(G) — 1

[where the homomorphism G — Aut(G) is defined by letting G act on G by conju-
gation).

If G is a profinite group such that, for every open subgroup H C G, we have
Za(H) = {1}, then we shall say that G is slim. One verifies immediately that G
is slim if and only if every open subgroup of G is center-free [cf. [Mzk5], Remark
0.1.3].

If G is a profinite group and X is set of prime numbers, then we shall say that
G is a pro-% group if the order of every finite quotient group of G is a X-integer. If
Y = {l} is of cardinality one, then we shall refer to a pro-X group as a pro-l group.

Curves:

Suppose that g > 0 is an integer. Then if S is a scheme, a family of curves of
genus g
X -85

is defined to be a smooth, proper, geometrically connected morphism of schemes
X — S whose geometric fibers are curves of genus g.

Suppose that g,r > 0 are integers such that 2g — 2 + r > 0. We shall denote
the moduli stack of r-pointed stable curves of genus g (where we assume the points
to be unordered) by M, [cf. [DM], [Knud] for an exposition of the theory of such
curves; strictly speaking, [Knud] treats the finite étale covering of Mg,r determined
by ordering the marked points]. The open substack M, ,, C M, . of smooth curves
will be referred to as the moduli stack of smooth r-pointed stable curves of genus g
or, alternatively, as the moduli stack of hyperbolic curves of type (g,r).

A family of hyperbolic curves of type (g,r)
X =S

is defined to be a morphism which factors X — Y — S as the composite of an
open immersion X < Y onto the complement Y\ D of a relative divisor D C Y
which is finite étale over S of relative degree r, and a family ¥ — S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y, D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact is
well-known from the elementary theory of algebraic curves. Next, we consider an
arbitrary connected normal S on which a prime [ is invertible (which, by Zariski
localization, we may assume without loss of generality). Denote by S’ — S the finite
étale covering parametrizing orderings of the marked points and trivializations of
the [-torsion points of the Jacobian of Y. Note that S’ — S is independent of
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the choice of (Y, D), since (by the normality of S), S” may be constructed as the
normalization of S in the function field of S’ (which is independent of the choice
of (Y, D) since the restriction of (Y, D) to the generic point of S has already been
shown to be unique). Thus, the uniqueness of (Y, D) follows by considering the
classifying morphism (associated to (Y, D)) from S’ to the finite étale covering of
(M g,r)z[ 1] parametrizing orderings of the marked points and trivializations of the
[-torsion points of the Jacobian [since this covering is well-known to be a scheme, for
[ sufficiently large|.) We shall refer to Y (respectively, D; D) as the compactification
(respectively, divisor of cusps; divisor of marked points) of X. A family of hyperbolic
curves X — S is defined to be a morphism X — S such that the restriction of this
morphism to each connected component of S'is a family of hyperbolic curves of type
(g,r) for some integers (g,r) as above. A family of hyperbolic curves X — S of
type (0,3) will be referred to as a tripod.

If X is a hyperbolic curve over a field K with compactification X C X, then
we shall write

XCI_ XCH—

Y

for the sets of closed points of X and X, respectively.

If Xk (respectively, Y1) is a hyperbolic curve over a field K (respectively, L),
then we shall say that X g is isogenous to Y7, if there exists a hyperbolic curve Z,,
over a field M together with finite étale morphisms Zy; — X, Zpy — Y. Note
that in this situation, the morphisms Zy; — Xk, Zp — Y7 induce finite separable
inclusions of fields K — M, L — M. [Indeed, this follows immediately from the
casily verified fact that every subgroup G C I'(Z, O7) such that G| J{0} determines
a field is necessarily contained in M * ]

If X is a generically scheme-like algebraic stack [i.e., an algebraic stack which
admits a “scheme-theoretically” dense open that is isomorphic to a scheme] over a
field K of characteristic zero that admits a [surjective] finite étale [or, equivalently,
finite étale Galois| coveringY — X, where Y is a hyperbolic curve over a finite
extension of K, then we shall refer to X as a hyperbolic orbicurve over K. [Although
this definition differs from the definition of a “hyperbolic orbicurve” given in [Mzk6],
Definition 2.2, (ii), it follows immediately from a theorem of Bundgaard-Nielsen-Fox
[cf., e.g., [Namba], Theorem 1.2.15, p. 29| that these two definitions are equivalent.]
If X — Y is a dominant morphism of hyperbolic orbicurves, then we shall refer to
X — Y as a partial coarsification morphism if the morphism induced by X — Y
on associated coarse spaces [cf., e.g., [FC], Chapter I, §4.10] is an isomorphism.

Let X be a hyperbolic orbicurve over an algebraically closed field of character-
istic zero; denote its étale fundamental group by Ax. We shall refer to the order of
the [manifestly finite!] decomposition group of a closed point x of X as the order
of x. We shall refer to the [manifestly finite!] least common multiple of the orders
of the closed points of X as the order of X. Thus, it follows immediately from the
definitions that X is a hyperbolic curve if and only if the order of X is equal to 1.
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Section 1: Maximal Abelian Cuspidalizations

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local. Write

dy,

for the cohomological dimension of k. Thus, if k is finite (respectively, nonar-
chimedean local), then d,, = 1 (respectively, d, = 2 [cf., e.g., [NSW], Chapter 7,
Theorem 7.1.8, (i)]). If k is finite (respectively, nonarchimedean local), we shall
denote the characteristic of £ (respectively, of the residue field of k) by p and the
number p (respectively, 1) by p'. Also, we shall write

Primes' det Primes\ (Primes ﬂ{pT})

[where PBrimes is the set of all prime numbers [cf. §0]; the intersection is taken in
the “ambient set” Z|.

Let X be a set of prime numbers that contains at least one prime number that
is invertible in k. Write

2 ER\E ) ST ERE R

[where the intersections are taken in the “ambient set” Z]. Denote by Z' the maa-
imal pro-Y' quotient of Z and by Z' the mazimal pro-X1 quotient of 7Z.

If k is an algebraic closure of k, then we shall denote the result of base-changing
objects over k to k by means of a subscript “k”. Any choice of a basepoint of X
determines an algebraic closure k of k, and hence an exact sequence

1 —=m(Xy) »m(X)— G, —1

where Gj, &' Gal(k/k); m(X), m(X3) are the étale fundamental groups of X,

Xz, respectively. Write Ax for the mazimal pro-¥X quotient of m1(X7) and Ix def

71 (X)/Ker(m (X3) - Ax). Thus, we have an exact sequence:

1—-Ax —-IIx -G — 1

Similarly, if we write X x X €f X x x X, then we obtain [by considering the mazximal

pro-Y quotient of mi ((X x X)y)] an exact sequence
1= Axxx = lxxx = G — 1

where Il x  x (respectively, Ax x) may be identified with I1x x g, I1x (respectively,
Ax x Ax). Let Iz C IIx«x be an open subgroup that surjects onto G. Write

7 — X x X for the corresponding covering; Ay def Ker(Ilz — Gy).
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Proposition 1.1.  (Group-theoreticity of Etale Cohomology) Let ARy
be a finite quotient, and N a finite A-module equipped with a continuous Ax -
(respectively, Tl x-; Ay-; Ilz-) action. Then for i € Z, the natural homomorphism

H'(Ax,N)— H (X%, N) (respectively, H'(Ilx,N) — H% (X, N);
H'(Az,N) — Hi(Zp, N); H'(Ilz,N) — H(Z,N))

1$ an isomorphism.

Proof. In light of the Leray spectral sequence for the surjections IIx — Gg,
Iy — Im(Ilz) C IIx [i.e.,, where “Im(—)” denotes the image via the natural
homomorphism associated to one of the projections Z — X x X — X]|, it suffices
to verify the asserted isomorphism in the case of Ax. If Y — X1-is a connected finite
étale Galois X-covering, then the associated Leray spectral sequence has “Fs-term”
given by the cohomology of Gal(Y/X) with coefficients in the étale cohomology of
Y and abuts to the étale cohomology of Xz. By allowing Y to vary, one then verifies
immediately that it suffices to verify that every étale cohomology class of Y [with
coefficients in N| vanishes upon pull-back to some [connected] finite étale 3-covering
Y’ — Y. Moreover, by passing to an appropriate Y, one reduces immediately to
the case where N = A, equipped with the trivial IIx-action. Then the vanishing
assertion in question is a tautology for “H'”; for “H?”, it suffices to take Y/ — Y
so that the degree of Y/ — Y annihilates A [cf., e.g., the discussion at the bottom
of [FK], p. 136]. O

Set:

M 2 Homs, (H*(Ax,21),21); My, % Homg, (H% (G, ME™ ), MEH)

Thus, My, Mx are free 7t -modules of rank one; Mx is isomorphic as a Gp-module
to ZT(1) [where the “(1)” denotes a “Tate twist” — i.e., G} acts on Z'(1) via the

cyclotomic character]; My, is isomorphic as a Gz-module to Z (d;,—1). [Indeed, this
follows from Proposition 1.1; Poincaré duality [cf., e.g., [FK], Chapter II, Theorem

1.13]; the fact, in the finite field case, that G = Z [together with an easy compu-

tation of the group cohomology of i], the well-known theory of the cohomology of
nonarchimedean local fields [cf., e.g., [NSW], Chapter 7, Theorem 7.2.6].]

Remark 1.2.0. Note that for any open subgroup Iy, C ITx [which we think of as
corresponding to a finite étale covering X’ — X]|, we obtain a natural isomorphism

MX = MX’

~

by applying the functor Homzf(—,ZT) to the induced morphism on group coho-

mology H2(Ax,Z") — H2(Ax/,Z") [where Ax o Ker(Ilx: — Gy)| and dividing
by [Ax : Ax/]. [One verifies easily that this does indeed yield an isomorphism
— cf., e.g., the discussion at the bottom of [FK]|, p. 136.] Moreover, relative to
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the tautological isomorphisms H2(Ax, Mx) = Z, H2(Ax/, Mx/) = Z1, the iso-
morphism Myx — My just constructed induces [via the restriction morphism on
group cohomology| the morphism Zt — 7t given by multiplication by [Ax : Ax/].
Similarly, if &’ is the base field of X', then we obtain a natural isomorphism

M, = My,

by applying the natural isomorphism My = My just constructed and the dual of
the natural pull-back morphism on group cohomology and then dividing by [k : k]
[cf., e.g., INSW], Chapter 7, Corollary 7.1.4].

Proposition 1.2. (Top Cohomology Modules)
(i) There are natural isomorphisms:
H% (G, My,) 27 H*(Ax,My) 27T, H&T2(Iy, Mx @ M) = Zt
HY Ay, M2?) =7t HUWH(I1y, M2? @ M) = 7

(ii) There is a unique isomorphism Myx — 2T(1) such that the image of
1 € Z' maps via the composite of the isomorphism Z! = H2(Ax,Mx) of (i)
with the isomorphism H2(Ax, Mx) = H?(Ax,Zt(1)) induced by the isomorphism
Mx = 2*(1) in question to the [first] Chern class of a line bundle of degree 1 on
XE.

Proof.  Assertion (i) follows from the definitions; the Leray spectral sequence for
the surjections IIx — G, lIz — Im(Ilz) C IIx [i.e., where “Im(—)” denotes the
image via the natural homomorphism associated to one of the projections Z —
X x X — X]. Assertion (ii) is immediate from the definitions. O

Proposition 1.3.  (Duality) Fori € Z, let Z' — A be a finite quotient, and
N a finite A-module.

(i) Suppose that N is equipped with a continuous Gy-action. Then the pairing

H(Gy, N) x H%~(G}),,Homa(N, M}, ® A)) — A

determined by the cup product in group cohomology and the natural isomorphisms
of Proposition 1.2, (i), determines an isomorphism as follows:

H(Gy, N) = Hom (H% (G, Hom (N, M), ® A)), A)

(ii) Suppose that N is equipped with a continuous I x - (respectively, Ax-; z-;
Az-) action. Then the pairing
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Hi(Tlx, N) x H&%2=(Tlx, Homy (N, Mx ® M}, ® A)) — A
(respectively, H'(Ax, N) x H*7(Ax,Homa (N, Mx ® A)) — A;
Hi(lz,N) x H% 4411z, Homs (N, M$* @ M}, @ A)) — A;
Hi(Az,N) x H* " (Az,Homa(N, MZ*> @ A)) — A)

determined by the cup product in group cohomology and the natural isomorphisms
of Proposition 1.2, (i), determines an isomorphism as follows:

Hi(Ilx, N) = Homu (H% 271 (IIx, Homa (N, Mx @ My ®@ A)), A)
(respectively, H'(Ax, N) = Homa(H?* " (Ax,Homa(N, Mx ® A)), A);
H'(Tz, N) = Hom 4 (H% =Tz, Homa (N, M$* @ M), @ A)), A);
H(Az,N) = Homs(H*"*(Az,Homa(N, MZ* @ A)), A))

Proof. Assertion (i) follows immediately from the fact that G, = Z [together with
an easy computation of the group cohomology of Z] in the finite field case; [NSW],
Chapter 7, Theorem 7.2.6, in the nonarchimedean local field case. Assertion (ii)
then follows from assertion (i); the Leray spectral sequences associated to Ix —
Gi, lIz — Im(Ilz) C IIx [i.e., where “Im(—)” denotes the image via the natural
homomorphism associated to one of the projections Z — X x X — X|; Proposition
1.1; Poincaré duality [cf., e.g., [FK], Chapter II, Theorem 1.13]. O

Proposition 1.4. (Automorphisms of Cyclotomic Extensions)
(i) We have: H°(Gy, H'(Ax, Mx)) = 0.
(i) There are natural isomorphisms
HY(x, Mx) = HY Gy, Mx) = (k)"
H'(Iz, Mx) = HYGy, Mx) = (k)"

— where the first isomorphisms in each line are induced by the surjections llx —»
G, Iz — Gg; the second isomorphisms in each line are induced by the isomor-
phism, of Proposition 1.2, (i), and the Kummer ezact sequence; (k*)" is the max-
imal pro-X'-quotient of k*.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis for abelian
varieties over finite fields” [cf., e.g., [Mumf], p. 206] in the finite field case; [Mzk8|,
Lemma 4.6, in the nonarchimedean local field case. The first isomorphisms of
assertion (ii) follow immediately from assertion (i) and the Leray spectral sequences
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associated to Ilx — Gy, Iz — Gg; the second isomorphisms follow immediately
from consideration of the Kummer exact sequence for Spec(k). O

Definition 1.5.

(i) Let H be a profinite group equipped with a homomorphism H — IIx. Then
we shall refer to the kernel Iy of H — Ilx as the cuspidal subgroup of H [relative
to H — IIx]|. We shall say that H is cuspidally abelian (respectively, cuspidally
pro-3* [where ¥* is a set of prime numbers]) [relative to H — Il x| if Iy is abelian
(respectively, a pro-X* group). If H is cuspidally abelian, then observe that H/Iy
acts naturally [by conjugation] on Iy; we shall say that H is cuspidally central
[relative to H — Ilx] if this action of H/Iy on Iy is trivial. Also, we shall use
similar terminology to the terminology just introduced for H — Ilx when Ilx is
replaced by Ax, HXXX7 Axxx.

(ii) Let H be a profinite group; H; C H a closed subgroup. Then we shall
refer to as an Hip-inner automorphism of H an inner automorphism induced by
conjugation by an element of Hy. If H' is also a profinite group, then we shall
refer to as an Hi-outer homomorphism H' — H an equivalence class of homo-
morphisms H' — H, where two such homomorphisms are considered equivalent if
they differ by composition by an Hi-inner automorphism. If H is equipped with

a homomorphism H — Gy [cf., e.g., the various groups introduced above|, and

o & Ker(H — Gy), then we shall refer to an Hj-inner automorphism (respec-

tively, Hi-outer homomorphism) as a geometrically inner automorphism (respec-
tively, geometrically outer homomorphism). If H is equipped with a structure of
extension of some other profinite group Hy by a finite product H; of copies of My,
or, more generally, a projective limit H; of such finite products, then we shall refer
to an Hi-inner automorphism (respectively, Hj-outer homomorphism) as a cyclo-
tomically inner automorphism (respectively, cyclotomically outer homomorphism).
If H is equipped with a homomorphism to ITx, Ax, IIxxx, or Axxx [cf. the
situation of (i)], and H; is the kernel of this homomorphism, then we shall refer to
an Hi-inner automorphism (respectively, Hq-outer homomorphism) as a cuspidally
inner automorphism (respectively, cuspidally outer homomorphism,).

Next, let
HX’ - HX

be an open normal subgroup, corresponding to a finite étale Galois covering X' — X.

Set

def
Mz = Mxrwx - x Clxxx

[where we regard ITx as a subgroup of IIxyx via the diagonal map]; write Z" —
X x X for the covering determined by I1z,. Thus, it is a tautology that the diagonal
morphism ¢ : X — X x X lifts to a morphism

VX — 7
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which induces the inclusion IIx — IIz on fundamental groups. If 7 — X x X is
a connected finite étale covering arising from an open subgroup of Ilx « x, write:

Uxxx & (X x X)N\u(X); Uz f (Uxxx) X(xxx)Z
Denote by Ay, the mazimal cuspidally [i.e., relative to the natural map to
T1((X x X)z)] pro-XT quotient of the maximal pro-- quotient of the tame funda-
mental group of (Uxxx )y [where “tame” is with respect to the divisor «(X) C
X x X] and by Iy, . the quotient m (Uxxx)/Ker(mi((Uxxx)z) = AvUxyx):
write IIy, C Iy, . for the open subgroup corresponding to the finite étale cover-
ing Uz — Uxxx-

Proposition 1.6. (Characteristic Class of the Diagonal)
(i) The pull-back morphism arising from the natural inclusion
x — Iz (CHxxx =lx x¢g, Ux)

composed with the natural isomorphism of Proposition 1.2, (i), determines a homo-
morphism

H5% (M, My ® M) — H%T2(Ilx, Mx ® M) = Zt
hence [by Proposition 1.3, (ii)] a class
n%i/ag € H2(HZ/, MX)

which is equal to the étale cohomology class associated to /(X)) C Z', or, alterna-
tively, the [first] Chern class of the line bundle Oz (J/(X)).

(ii) Denote by

]LX

diag [Z/] - Z,

the complement of the zero section in the geometric line bundle [i.e., Gy,-torsor/
determined by Oz (/' (X)), by AL(; 1z the mazimal cuspidally pro-X1 quotient of
iag

the mazimal pro-X quotient of the tame fundamental group of (L;ag [Z')% [where

“tame” 1is with respect to the divisor determined by the complement of the Gy, -

torsor Lgiag [Z'] in the naturally associated PL-bundle], and by H]L;' 1z the quotient
iag

T1(Liag[2']) /Ker(m (L3, [2'])7) — A]Liiag[z’])' Then [in light of the isomorphism

of Proposition 1.2, (ii)] we have a natural exact sequence

1 — Mx — II; (2] — 1l —1
diag

, . : di
whose associated extension class is equal to the class 1y *®.

(7ii) The global section of Oz (V' (X)) over Z' determined by the natural inclu-
sion Oz — Oz (V/(X)) defines a morphism

UZ/ - ]L’gia,g [Zl]
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over Z' which induces a surjective homomorphism of groups over Il :

HUZ’ - HLX

diag [Z/]

Proof. Assertion (i) follows immediately from Propositions 1.1, 1.2, 1.3, together
with well-known facts concerning Chern classes and associated cycles in étale co-
homology [cf., e.g., [FK]|, Chapter II, Definition 1.2, Proposition 2.2]. Assertion
(ii) follows from Proposition 1.1; [Mzk7], Definition 4.2, Lemmas 4.4, 4.5. Asser-
tion (iii) follows from [Mzk8|, Lemma 4.2, by considering fibers over one of the
two natural projections Iy, — Ilxxx — Ilx. [Here, we note that although in
[Mzk7], §4; [Mzk8], the base field is assumed to be of characteristic zero, one ver-
ifies immediately that the same arguments as those applied in loc. cit. yield the
corresponding results in the finite field case — so long as we restrict the coefficients
of the cohomology modules in question to modules over ZT] O

Definition 1.7.

(i) We shall refer to a covering Z’ — X x X as in the above discussion as the
diagonal covering associated to the covering X' — X. We shall refer to an extension
of profinite groups

1> My —-D =1, —1

whose associated extension class is the class n%i,ag of Proposition 1.6, (i), as a fun-
damental extension [of I1z/]. In the following (ii) — (iv), we shall assume that
1— Mx - D — Ilxyx — 1is a fundamental extension.

(ii) Let =,y € X(k); write D,, D, C Ilx for the associated decomposition
groups [which are well-defined up to conjugation by an element of A x — cf. Remark
1.7.1 below]. Now set:

def def
,Dx = D‘DIXGkHX’ DI,y = D|D:v><GkDy

Thus, D, (respectively, D, ,) is an extension of IIx (respectively, Gj) by Mx.
Similarly, if D=5, m; - x;, E =) ; njy; are divisors on X supported on points
that are rational over k, then set:

def
Dp = 5 m;-Dy,;; Dpr = E m; -1 - Dy, oy
1

2]

[where the sums are to be understood as sums of extensions of IIx or Gy by Mx

— i.e., the sums are induced by the additive structure of Mx]. Also, we shall write

¢ —Dl, [where we regard Ilx as a subgroup of ITyy x via the diagonal map].

[Thus, C is an extension of IIx by Mx whose extension class is the Chern class of
the canonical bundle of X ]
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(iii) Let S € X (k) be a finite subset. Then we shall write

s €[] D.
eSS

[where the product is to be understood as the fiber product over IIx]|. Thus, Dg
is an extension of IIx by a product of copies of Mx indexed by elements of S. We
shall refer to Dg as a maximal abelian S-cuspidalization [of I1x at S]. Observe that
if T'C X (k) is a finite subset such that S C T, then we obtain a natural projection
morphism Dp — Dg.

(iv) We shall refer to a homomorphism
Hyyux =D

over Ilxxx as a fundamental section if, for some isomorphism of D with H]L§
iag
that induces the identity on Ilx«x, Mx, the resulting composite homomorphism

My, « — H]L;iag is the homomorphism of Proposition 1.6, (iii).

Remark 1.7.1. Relative to the situation in Definition 1.7, (ii), conjugation by
elements 6 € Ax induces isomorphisms between the different possible choices of
“D,”, all of which lie over the isomorphism between any of these choices and Gy
induced by the projection Ilx — G. Moreover, by lifting (§,1) € Axxx C lxxx
to an element dp € D, and conjugating by dp, we obtain natural isomorphisms
between the various resulting “D,’s” which induce the identity on the quotient
group D, — Ilx, as well as on the subgroup Mx C D,. Note that this last
property [i.e., of inducing the identity on IIx, Mx] holds precisely because we are
working with § € Ax C Ilx, as opposed to an arbitrary “0 € Il x”.

Remark 1.7.2. By Proposition 1.4, (ii), if £ is any profinite group extension of
IIx (respectively, Gi; an open subgroup Il C Ilyxyx that surjects onto Gj) by
Mx, then the group of cyclotomically outer automorphisms of the extension £ [i.e.,
that induce the identity on Ilx (respectively, Gi; I1z) and Mx] may be naturally
identified with (k*)". In particular, in the context of Definition 1.7, (iv), any two
fundamental sections of D differ, up to composition with a cyclotomically inner
automorphism of D, by a “(k* )A—multiple”.

Next, if k is nonarchimedean local, then set GL def Gy; if k is finite, then write
GL C Gy, for the maximal pro-XT subgroup of Gy [so G,Z >~ 7.1]. Also, we shall use
the notation
i def i
H(_) = H(_) X G Gk - H(_)
[where “(—)” is any smooth, geometrically connected scheme over k, with arithmetic
fundamental group II_y — Gy].
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Proposition 1.8. (Basic Properties of Maximal Abelian Cuspidaliza-
tions) Let
1—>Mx—>D—>HXX)(—>1

be a fundamental extension; ¢ : I, , — D a fundamental section; S C
X (k) a finite subset. Then:

(i) The profinite groups Axxx, Ax, as well as any profinite group extension
of H&Xx or HE( by a [possibly empty] finite product of copies of Mx is slim [cf.

§0/. In particular, the profinite group Dg def Ds xq, Gz is slim.

(ii) For x € X (k), write U, oot X\{z}. Denote by Ay, the mazimal cuspidally
fi.e., relative to the natural map to 71 ((Uy))] pro-ST quotient of the mazimal pro-%
quotient of the tame fundamental group of (U, )z [where “tame” is with respect to the
complement of U, in X ] and by y, the quotient m1(U,)/Ker(mi((Uz)z) = Au,).
Then the inverse image via either of the natural projections Iy, , — Ilx of
the decomposition group D, C Ilx s naturally isomorphic to 1y, . In particular,
AUx x> H],}Xxx are slim.

(iii) For S C X (k) a finite subset, write:

Us € I Ua
€S

[where the product is to be understood as the fiber product over X]. Denote by
Ay, the mazimal cuspidally [i.e., relative to the natural map to w1 ((Us)z)] pro-X1
quotient of the maximal pro- quotient of the tame fundamental group of (Us)z
[where “tame” is with respect to the complement of Us in X/, and by Iy, the
quotient w1 (Ug)/Ker(m((Us)z) — Aug). Then Ayy, HJ{JS are slim. Forming
the product of the specializations of ¢ to the various Dy X, IIx C Ilxxx yields
homomorphisms
My — [ Tv, — Ds
xeS

[where the product is to be understood as the fiber product over I1x]. Moreover, the

composite morphism Iy, — Dg is surjective; the resulting quotient of Ay, def

Ker(Ily, — Gg) is the maximal cuspidally central quotient of Ay, relative
to the surjection Ayg — Ax.

(iv) The quotient of Ay, L Ker(Ily, , « — Gy) determined by ¢ : y, o —
D is the maximal cuspidally central quotient of Ay, ., relative to the sur-
jection Ay, « = Axxx.

Proof.  Assertion (i) follows immediately from the slimness of HTX, Ax [cf., e.g.,
[Mzk5], Theorem 1.1.1, (ii); the proofs of [Mzk5|, Lemmas 1.3.1, 1.3.10], together
with the [easily verified| fact that Gz acts faithfully on Mx via the cyclotomic char-
acter. Next, we consider assertion (ii). The portion of assertion (ii) concerning Il
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follows immediately from the existence of the “homotopy exact sequence associated
to a family of curves” [cf., e.g., [Stix], Proposition 2.3]. The slimness assertion then
follows from assertion (i) [applied to HE(] and the slimness of Ay, [cf. the proofs
of [Mzk5], Lemmas 1.3.1, 1.3.10]. As for assertion (iii), the slimness of Ayy, HES
follows via the arguments given in the proofs of [Mzk5], Lemmas 1.3.1, 1.3.10. The
existence of homomorphisms Iy, — [[,c.g Hy, — Ds as asserted is immediate
from the definitions, assertion (ii). For z € S, write

D, [Us] C Iy,

for the decomposition group of x; I,[Us| C D, [Ug]| for the inertia subgroup. Now
it is immediate from the definitions that I.[Ug] maps isomorphically onto the copy
Mx in Dg corresponding to the point x. This implies the desired surjectivity.
Since, moreover, it is immediate from the definitions that the cuspidal subgroup
of any cuspidally central quotient of Ay, is generated by the image of the I, [Us],
as = ranges over the elements of S, the final assertion concerning the maximal
cuspidally central quotient of Ay, follows immediately. Assertion (iv) follows by a
similar argument to the argument applied to the final portion of assertion (iii). O

Next, let Z/ — X x X (respectively, 2"/ — X x X; Z* — X x X) be the
diagonal covering associated to a covering X’ — X (respectively, X" — X; X* —
X) arising from an open subgroup of Ilx; denote by «/ : X — Z’ (respectively,
e X = 770" 0 X — Z*) the tautological lifting of the diagonal embedding
t: X — X x X and by k' (respectively, k”; k*) the extension of k determined by
X' (respectively, X”; X*). Assume, moreover, that the covering X" — X factors

as follows:
X// — X/ N X* N X

Thus, we obtain a factorization 2" — Z' — Z* — X x X. Let

1—>MXHDHHHZ//H1

be a fundamental extension of 115 .

Write
1 — MX — D/),(”XX” — HX//><X” — ].

for the pull-back of the extension D” via the inclusion I x/yx» C Ilz». Now
if we think of IIx.x or Ilx~«x~ as only being defined up to Ax» x {1}-inner
automorphisms, then it makes sense, for § € Ax /Ax to speak of the pull-back of
the extension D%, . via § x 1:

1 — MX - (6 X ]‘)*DSI(V”XX” — HX//XX// — 1

In particular, we may form the fiber product over Il x: y x:

def
SX”/X* (D//)X”XX” = H ((5 X 1)*ID/)/(//><X//
5€AX*/AX//
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Thus, Sx/x«(D")xmxx» is an extension of Ilx/x by a product of copies of
MX indexed by Ax*/AXN; SX///X*<DN)X//><XN admits a tautologz'cal AX// X {1}—
outer [more precisely: a (Ax» x {1}) X1, v Sxr/x+(D") x1x xr-outer] action by
the finite group Ax-/Ax» = (Ax+/Ax») x {1}. Moreover, the natural outer
action of Gal(X”/X) = Gal((X” X X”)/Z”) = Hx/HX// on HX”XX” [arising
from the diagonal embedding Ilx < Ilz~| clearly lifts to an outer action of
Gal(X"/X) on Sxn/x-(D")xxx, which is compatible, relative to the natural ac-
tion of Gal(X”/X) on Ax«/Ax by conjugation, with the Ax. x {1}-outer action
of Ax«/Ax» on Sxw,x+(D")xrxxr. Thus, in summary, the natural isomorphism

{(AX* JAxr) % {1}} x Gal(X”/X) = Gal(X" x X")/Z*)

determines a homomorphism Gal((X"” x X")/Z*) — Out(Sx»/x-(D")xxx) via
which we may pull-back the extension “1 — (=) — Aut(—) — Out(—) — 17 [cf.
§0; Proposition 1.8, (i)] for Sx» ) x«(D")x»xx» to obtain an extension

1 — H MX — SX”/X* (D”) — HZ* — 1
Axcx /A

in which IIz- is only determined up to Ax~ x {1}-inner automorphisms. Note,
moreover, that every cyclotomically outer automorphism of the extension D’ —
i.e., an element of (k)" [cf. Remark 1.7.2] — induces a cyclotomically outer
automorphism of Sx v x+«(D"). In particular, we have a natural cyclotomically outer

action of (k*)" on Sx/x+(D").

Next, let us push-forward the extension Sy x+(D") just constructed via the

natural surjection
II Mx— ]I Mx
AX*/AX” AX*/AX’

[which induces the identity morphism My — My between the various factors of
the domain and codomain], so as to obtain an extension Trx ., x.x+(D") as follows:
1 — H MX — TrX”/X’:X* (D”) — HZ* — ]_

Axx /Ay

[in which IIz« is only determined up to Ax~ x {1}-inner automorphisms].

Proposition 1.9. (Symmetrizations and Traces) In the notation of the
discussion above:

(i) The extension Trx. x.x/(D") of l1z: by Mx is a fundamental exten-
sion of 11 4:.

(ii) There is a natural commutative diagram:

1 — II My — Sx/x(D") — Ixyx — 1
Ax /Ay

l l J

1 — H MX — SX//X(TI‘X///X/:X/(DH)) — HXXX — 1
Ax /A
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[which is well-defined up to Ax: x {1}-inner automorphisms — cf. Remark 1.9.1
below.

(iii) Relative to the commutative diagram of (i), the natural cyclotomically
outer action of (k*)" on Sxu/x(D") lies over the composite of the map (k)" —
(kx)A given by raising to the [Ax/ : Axn~]|-power with the natural cyclotomically
outer action of (k’x)/\ on Sx/ /) x(Trxm xi.x/(D")). In particular, if N is a positive
integer that divides [Ax: : Axn|, then the natural cyclotomically outer action of
an element of (k*)" on Sx/x(D") lies over the cyclotomically outer action of an

element of {(kX)A}N on Sx:/x (Trxr ) xr.x/(D")).

Proof. To verify assertion (i), observe that it is immediate from the definitions
that
L/(X) XZ/ (X” % X//> g X/I % X//

is equal to the Ax//Ax-orbit of /" (X)) x zv (X" x X") C X" x X”. Now assertion
(i) follows by translating this observation into the language of étale cohomology
classes associated to subvarieties; assertions (ii), (iii) follow formally from assertion
(i) and the definitions of the various objects involved. (O

Remark 1.9.1. Relative to the commutative diagram of Proposition 1.9, (ii),
note that, although Sx//x (Trx»/x/.x/(D")) is, by definition, only well-defined up
to Ax: x {1}-inner automorphisms, the push-forward of Sx. /x(D") by

Mo I

Ax/AX// Ax/AX/

is well-defined up to Ax» x {1}-inner automorphisms. That is to say, the push-
forward extension implicit in this commutative diagram furnishes a canonically
more rigid version of the extension Sx//x (Trx./x:.x/(D")).

Definition 1.10.

(i) We shall refer to the extension Sy x«(D") [of IIz+] constructed from
the fundamental extension D" as the [X"/X*-[symmetrization of D", or, alter-
natively, as a symmetrized fundamental extension. We shall refer to the extension
Trxxr.x+(D") [of Iz«] constructed from the fundamental extension D" as the
[X" )X . X*-Jtrace of D", or, alternatively, as a trace-symmetrized fundamental
extension.

(i) If D' is a fundamental extension of I/, then we shall refer to as a morphism
of trace type any morphism

SX///X(D//) — SX’/X(D/>
obtained by composing the morphism

SX”/X(D//) — SX’/X (TI"X“/X':X'(DH))
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of Proposition 1.9, (ii), with a morphism
SX’/X (TYX/'/X/:X' (DH)) — SX’/X (D/)

arising [by the functoriality of the construction of “Sx/,x (—)”] from an isomorphism
of [fundamental] extensions Try./x:.x/(D") = D’ of Iz by Mx [which induces
the identity on Iz, Mx].

(iii) We shall refer to as a pro-symmetrized fundamental extension any com-
patible system [indexed by the natural numbers]

S > S Hxex

of morphisms of trace type [up to inner automorphisms of the appropriate type| be-
tween symmetrized fundamental extensions, where S; is the X;/X-symmetrization
of a fundamental extension of Ilz;; Z; is the diagonal covering associated to an
open normal subgroup Iy, C Ilx; the intersection of the Ilx, is trivial. In this
situation, we shall refer to the inverse limit profinite group

Soo E'lim S

as the limit of the pro-symmetrized fundamental extension {S;}; any profinite group
S~ arising in this fashion will be referred to as a pro-fundamental extension [of

Mxyxx/

(iv) Let S C X (k) be a finite subset; S’ an X’/ X-symmetrization of a funda-
mental extension D’ of II. Then we shall write

 def /
Sg = H SDmXGkHX

€S

[where the product is to be understood as the fiber product over IIx]. Thus, Sg
is an extension of Ilx by a product of copies of Mx. Similarly, given a projective
system {S;} as in (iii), we obtain a projective system {(S;)s}, with inverse limit:

(SOO)S

We shall refer to (Soo)s as a maximal abelian S-pro-cuspidalization [of I1x at S].
Observe that if 7" C X (k) is a finite subset such that S C T, then we obtain a
natural projection morphism (Soo)r — (Soo)s-

Remark 1.10.1. Let D be as in Definition 1.7, (iii); S’, {S;}, Se as in Definition
1.10, (iii), (iv). Then observe that it follows from Proposition 1.8, (i), that the
“daggered versions” D, (ST, SiT, and SI_ [i.e., the result of applying “x ¢, GL” to
D, S, S;, and S| are slim. In particular, if S C X is any finite set of closed
points of X, then we may form the objects

DL (SHE S0k (Sw)k
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by passing to a Galois covering X, — X [i.e., the result of base-changing X to
some finite Galois extension kg of k| such that the closed points of X}, that lie
over points of S are rational over kg; forming the various objects in question over
Xks [cf. Definition 1.7, (iii); Definition 1.10, (iv)]; and, finally, “descending to X”
via the natural outer action of Gy/ Glzs on the various objects in question [cf. the
exact sequence “1 — (=) — Aut(—) — Out(—) — 17 of §0; the slimness mentioned
above]. Thus, in the remainder of this paper, we shall often speak of the various
objects defined in Definition 1.7, (iii); Definition 1.10, (iv), even when the points of
the finite set S are not necessarily rational over k.

Before proceeding, we note the following;:

Lemma 1.11. (Conjugacy Estimate) Let H C Ax be a normal open
subgroup; a € Ax /H an element not equal to the identity; N a XT-integer [cf. §0).
Then there exists a normal open subgroup H' C Ax contained in H such that for
any normal open subgroup H" C Ax contained in H' and any a” € Ax/H" that
lifts a, the cardinality of the H-conjugacy class Conj(a”, H") C Ax/H" of a”
in Ax/H" is divisible by N.

Proof. 1In the notation of the statement of Lemma 1.11, denote by Z(a”, H") C H
the subgroup of elements § € H such that 6 -a” -6~ ! = a” in Ax/H"”. Then it
is immediate that if o’ is the image of a” in Ax/H’, then Z(a",H") C Z(d', H'),
so the cardinality of Conj(a”, H") =2 H/Z(a"”,H") is divisible by the cardinality
of Conj(a’,H") = H/Z(a',H"). Thus, it suffices to find a normal open subgroup
H' C H such that for any o’ € Ax/H' that lifts a, the cardinality of Conj(a’, H')
is divisible by N.

To this end, let us consider, for some prime number [ € X, the mazimal pro-l
quotient H[l] of the abelianization H* of H. Note that Ax/H acts by conjugation
on H®" HJl]. Now I claim that there exists a [nonzero] h; € H[l] such that a(h;) #
hi. Indeed, if this claim were false, then it would follow that a acts trivially on H|l].
But since a induces a nontrivial automorphism of the covering of X+ determined
by H, it follows that a induces a nontrivial automorphism of the [-power torsion
points of the Jacobian of X7 [since these points are Zariski dense in this Jacobian]
— a contradiction. This completes the proof of the claim.

Now let j € H be an element that lifts the various h; obtained above for the
[finite collection of] primes [ that divide V; let ax € Ax be an element that lifts
a. Then observe that for some integer power M of N that is independent of the
choice of ax, the image of j"-ax -j~"-ay' in H* @ (Z/MZ) is nonzero, for n € i/
with nonzero image in i/N A Thus, if we take H' equal to the inverse image of
M - H?* in H(C Ax), we obtain that the intersection of the subgroup jZ C H with
Z(a',H') [where o’ € Ax/H’ lifts a] does not contain j, for n € Z with nonzero
image in Z/N - Z. But this implies that the intersection (jz) N Z(d,H") C jN’Z,
hence that [H : Z(a’, H')] is divisible by N, as desired. O
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Next, we consider the following fundamental extensions of Il gz, 1 z::

p &t Opx z; D C T xrx (D)
[cf. Proposition 1.6, (ii)]. Note that in this situation, it follows immediately from

the definitions that we obtain a natural isomorphism D" = II, (7> Which we shall

diag
use in the following discussion to identify D', II; (21" Thus, we have fundamental
diag
sections:
Iy,, - D" Iy, - D

[cf. Proposition 1.6, (iii)]. In particular, by pulling back from Z” to X" x X" we
obtain a surjection:

"
HUX”XX” > Lxrxxr

Now if we apply the natural outer (Ax/Ax») x {1}-action on Ily,,, ., to this
surjection, it follows from the definition of “Sx.,x(D")” that we obtain a natural
homomorphism

M n = Sxryx (D) xrmxxm

which is easily verified [cf. Proposition 1.8, (ii), (iii)] to be surjective. Since, more-
over, the construction of this surjective homomorphism is manifestly compatible
with the outer actions of Gal(X”/X) on both sides, we thus obtain a natural sur-
jection:

HUXXX - SX”/X<2N)

Now let us denote by
DX g HUXXX

the decomposition group of the subvariety «(X) C X x X. [Thus, Dx is well-defined
up to conjugation; here, we assume that we have chosen a conjugate that maps to
the image of the diagonal embedding IIx < Ilxxx via the natural surjection
Iy, x = xxx.] Observe that we have a natural exact sequence

1—Ix —Dx —1IIx —1

[where Iy — i.e., the inertia subgroup of Dx — is defined so as to make the

sequence exact|, together with a natural isomorphism Ix = Mx. Also, we shall

. def def . . .
write Dx» = Dx (v, .; Dx» = Dx (v, ... Since the construction just

carried out for double primed objects may also be carried out for single primed
objects, we thus obtain the following:

Proposition 1.12. (Symmetrized Fundamental Sections) In the notation
of the discussion above:

(i) There is a natural commutative diagram:

Dx C Huc,x — Sxv/x(D")

bl

DX HUXXX - SX’/X(2/>

N
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[where the vertical arrow on the right is the morphism in the diagram of Proposition

1.9, (ii)].

(i) Denote by means of a subscript X" the result of pulling back extensions of
Mxwx, Hzm, Uxnyxr toxn [via the diagonal inclusion]. Then the projection [cf.
the fiber product defining Sx» /x (D")] to the factor labeled “Ax»/Ax»” detemines
a natural surjection

CH : SX”/X (QH>X” . 2// .

whose restriction to Dx [i.e., relative to the arrows in the first line of the com-
mutative diagram of (i)] defines an isomorphism Dy, = D'.,. Moreover, the
cuspidal subgroup of D x. maps isomorphically onto the factor of Mx inSxx (D"
labeled “Axn/Axi»”. In particular, if we denote by

SX”/X (2,/>7é

the quotient of Sxn,x (D") by this factor of Mx, then (" determines a surjection

L+ S (D)o — T

whose restriction to the quotient Dx» —» Ilxn is equal to the identity I x» = Tlxn
[up to geometric inner automorphisms]. Thus, we have a natural commutative
diagram [well-defined up to geometric inner automorphisms]

C//
DX// g le//X(QH>X// e 7;/(,,

l l l

C//
HX// — SX/I/X (2/))76(// i) HX//

i which the two horizontal composites are isomorphisms; the vertical arrows are

surjections; both squares are cartesian.

(iii) If we carry out the construction of (ii) for the single primed objects, then
the commutative diagram of (i) induces a natural commutative diagram [well-
defined up to geometric inner automorphisms/:

CN
HX// — SX”/X (2”);&(” i HX//

l ! !

C/
HX/ — SX//X(Q/)gé(, i HX/

Moreover, there is a natural outer action of Gal(X" /X)) (respectively, Gal(X'/X))
on the first (respectively, second) line of this diagram; these outer actions are com-
patible with one another.

(iv) When considered up to cyclotomically inner automorphisms, the sections
of C;'é form a torsor over the group

I1 (k"))

(Ax/Axi)\(Axn/Axm)



22 SHINICHI MOCHIZUKI

[where the “\” denotes the set-theoretic complement]. The Gal(X" /X )-equivariant
sections of ¢, form a torsor over the Gal(X" /X )-invariant subgroup of this group.
Similar statements hold for the single primed objects.

(v) The double and single primed torsors of equivariant sections of (iv) are
related, via the right-hand square of the diagram of (iii), by a homomorphism

RO R SN | SR

(Ax/Axrr) (Ax/Axr)
\(Axr/Dxrr) \(Axr/Axr)

[where the superscripts denote the result of taking invariants with respect to the
action of the superscripted group/ that satisfies the following property:

An element £ of the domain maps to an element of the codomain whose
component in the factor labeled o' € Ax/Ax: is a product of elements of
((k’)X)A of the form Nk/,,/k/(A”)””.

Here, o’ € (Ax/Ax:)\(Ax//Axn) maps to a' in Ax /Ax:; N e (K'))" is the
component of £ in the factor labeled a; k., is an intermediate field extension

between k' and k" such that N’ € ((k..)*)"; N (K. = (K"

o
is the morm map; n” is the cardinality of the Ax,-conjugacy class of a” in
(Ax/Axr). In particular, by Lemma 1.11 [where we take “H” to be Ax,, “H"”
to be Axn ], for a given Ax/, if, for a given positive integer N, Ax is “sufficiently
small”, then an arbitrary Gal(X"/X)-equivariant section of (; lies over the
canonical section of C;ﬁ given in (iii), up to the cyclotomically outer action of
some N -th power of an element of the single primed version of the group exhibited
in the display of (iv).

Proof. All of these assertions follow immediately from the definitions [and, in the
case of assertion (iv), Proposition 1.4, (ii)]. O

Definition 1.13. Let D' be a fundamental extension of Ilz; {S;} a pro-
symmetrized fundamental extension, with limit S [cf. Definition 1.10, (iii)].

(i) We shall refer to as a symmetrized fundamental section a homomorphism
HUXXX - SX’/X(D/)

obtained by composing the surjection Hy, . — Sx//x (D') of Proposition 1.12,
(i), with the isomorphism Sx//x(D’) = Sx//x(D’) induced by an isomorphism
D' = D’ of fundamental extensions of Il by My [which induces the identity on
Iz, Mx|. We shall refer to an inclusion

Dx — Sx//x(D')
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obtained by restricting a symmetrized fundamental section to Dx C Iy, [cf.
Proposition 1.12, (i)] as a fundamental inclusion.

(ii) We shall refer to a compatible system of symmetrized fundamental sections
Iy, « — Si as a pro-symmetrized fundamental section and to the resulting limit
homomorphism Iy, , — So as a pro-fundamental section. Similarly, we have a
notion of “pro-fundamental inclusions”.

Remark 1.13.1. Thus, by the above discussion, if we take the “S;” to be the
symmetrizations of the Il x (7 as in Proposition 1.6, (ii), then we obtain natural
iag

pro-fundamental sections and pro-fundamental inclusions [cf. Proposition 1.12, (i),

(if), (iii)].

Proposition 1.14. (Maximal Cuspidally Abelian Quotients) Let {S;}
be a pro-symmetrized fundamental extension, with limit S, [cf. Definition
1.10, (i#i)] and pro-fundamental section Ily, , — S [¢f. Definition 1.13,
(i3)]; S C X a finite set of closed points [cf. Remark 1.10.1]. Then:

(i) The pro-fundamental section Iy, — Soo determines a surjection

My, = (Swo)s

[¢f. Proposition 1.8, (iii)]. The resulting quotient of Ay (respectively, Iy ) is
the maximal cuspidally abelian quotient Ay, — A‘E:b (respectively, My, —
H‘f}:b of Ayg (respectively, Il ).

(ii) The quotient of Ay, . (respectively, ly, . ) induced by the pro-funda-
mental section Iy, , — So is the maximal cuspidally abelian quotient
[which we shall denote by] Ay, o — A%‘;bxx (respectively, My, . — H%]‘;bxx
of Ay, x (respectively, Iy, ).

Proof. 1Indeed, this follows as in the proof of Proposition 1.8, (iii), (iv), by observ-
ing that the cuspidal subgroup of the maximal cuspidally abelian quotient of Ay,
(respectively, Ay, ) is naturally isomorphic to the inverse limit of the cuspidal
subgroups of the maximal cuspidally central quotients of the Ay, xa, Axs (C Ayy)
(respectively, Ay, ..) [as Ax: € Ax ranges over the open normal subgroups of

Ax]. O

Proposition 1.15. (Automorphisms and Commensurators) Let {S;} be a
pro-symmetrized fundamental extension, with limit S, [cf. Definition 1.10,
(11i)] and pro-fundamental inclusion Dx — S [cf. Definition 1.13, (ii)].
Then:

(i) Any automorphism « of the profinite group Hi}ibxx which

(a) is compatible with the natural surjection H}}'ibxx — IIxxx and induces
the identity on xx x;
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(b) preserves the image of Mx = Ix C Dx wvia the natural inclusion Dx —
c-ab
Uxxx

1s cuspidally inner.

(ii) x (respectively, Ax ) is commensurably terminal [cf. §0/ in Ilx.x
(respectively, Axxx ).

o IIc—ab

(i1i) Dx is commensurably terminal in S;, S Ty

Proof. First, we verify assertion (i). By Proposition 1.14, (ii), we have a natural
isomorphism H‘f]‘f(bxx 5 S, 5o we may think of o as an automorphism of S,.. In
light of (a); Proposition 1.8, (iii), it follows that « is compatible with the natural
surjections Soo — S;. Write «; for the automorphism of S; induced by a. By (a),
(b), it follows that «; is an automorphism of the extension S; of Il x « x by a product
of copies of M x which induces the identity on both Il x « x and the product of copies
of Mx [cf. the definition by a certain fiber product of the symmetrized fundamental
extension S;]. [Here, we note that the fact that «; induces the identity on each copy
of Mx follows by considering the non-torsion [cf. Propositions 1.2, (ii); 1.6, (i), (ii)]
extension class determined by that copy of Mx [which is preserved by «;!], together
with the fact that «; induces the identity on the second cohomology groups of open
subgroups of Axyx with coefficients in Mx.] Thus, up to cyclotomically inner
automorphisms, «; arises from a collection of elements of (kix)/\, where k; is some
finite Galois extension of k [cf. Proposition 1.4, (ii)], one corresponding to each
copy of Mx. Moreover, since these copies of Mx are permuted by the action of
IIx«x by conjugation, it follows that [up to cyclotomically inner automorphisms|

«; arises from a single element of (k:ix)/\, which in fact belongs to (k*)" (C (k:ix)A)
[as one sees by considering the conjugation action via the “Gy portion” of Iy x x].
On the other hand, since the a; form a compatible system of automorphisms of the
S;, it follows from Proposition 1.9, (iii), that this element of (k*)" must be equal

to 1, as desired.

Next, to verify assertion (ii), let us observe that it suffices to show that Ax is
commensurably terminal in A x « x. But this follows immediately from the fact that
Ax is slim [cf. Proposition 1.8, (i)]. Finally, we consider assertion (iii). Clearly,
it suffices to show that Dx is commensurably terminal in S;. By assertion (ii),
to verify this commensurable terminality, it suffices to show that the [manifestly
abelian| cuspidal subgroup H; C S; [i.e., relative to the natural surjection S; —
IIx x| satisfies the following property: Every h € H; such that h® —h € Dy,
for all ¢ in some open subgroup J of Dy, satisfies h € Dx. But this property
follows immediately [cf. the definition by a certain fiber product of the symmetrized
fundamental extension S;] from the fact that, for J sufficiently small, the J-module
H,;/(Dx () H;) is isomorphic to a direct product of a finite number of copies of Mx.

O

The following result is the main result of the present §1:
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Theorem 1.16.  (Reconstruction of Maximal Cuspidally Abelian Quo-
tients) Let X, Y be hyperbolic curves over a finite or nonarchimedean local
field; denote the base fields of X, Y by kx, ky, respectively. Let ¥ x (respectively,
Yy ) be a set of prime numbers that contains at least one prime number that is
invertible in kx (respectively, ky ); write Ax (respectively, Ay ) for the maximal
cuspidally pro-E& (respectively, pro-Z{, ) quotient of the maximal pro-Xx
(respectively, pro-Yy ) quotient of the tame fundamental group of X7 (re-
spectively, Yz ) [where “tame” is with respect to the complement of X7y (respec-
tively, Y. ) in its canonical compactification], and Ilx (respectively, Ily ) for the
corresponding quotient of the étale fundamental group of X (respectively, Y ). Let

~

(O HX — Hy
be an isomorphism of profinite groups. Then:

(i) We have EE( = Z;; write ©F &' EE{ = E;. Moreover, kx is a finite field
if and only if ky is; o preserves the decomposition groups of cusps; X is of
type (g,7) [where g, > 0 are integers such that 2g —2+r > 0/ if and only if Y is
of type (g,7). Finally, if kx, ky are nonarchimedean local, then their residue
characteristics coincide.

(ii) o is compatible with the natural quotients IIx — Gy, IIy — Gy, .

(iii) Assume that X, Y are proper. Denote by Iy, — G2 Ty, . —

Uxxx’

H‘f}gzy the maximal cuspidally [i.e., relative to the natural surjections Hy . —

Mxxx, My, ., — IIyxy/ abelian quotients [cf. Proposition 1.14]. Then there
is a commutative diagram [well-defined up to cuspidally inner automorphisms/

c-ab
c-ab o Hc-ab
Uxxx Uy xy

l |

aXo

Oxxx — Ilyxy

— where, the horizontal arrows are isomorphisms which are compatible with
the natural inclusions Dy — II§?® | Dy — Mg [¢f. Proposition 1.12, (i)];
the vertical arrows are the natural surjections. Finally, the correspondence

o — ac—ab

is functorial [up to cuspidally inner automorphisms] with respect to «.

Proof. First, we consider assertions (i), (ii). Note that kx is finite if and only if, for
every open subgroup H C Iy, the quotient of the abelianization H?" by the closure
of the torsion subgroup of H?" is topologically cyclic [cf. [Tama], Proposition 3.3,
(ii)]; a similar statement holds for ky, Ily. Thus, kx is finite if and only if ky is.
Now suppose that kx, ky are finite. Then assertion (ii) also follows from [Tama],
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Proposition 3.3, (ii). The fact that ZE( = E{, then follows from the following
observation: The subset ZE( C PBrimes is the subset on which the function

Primes > [ — dimg, (Ax)™ @ Q)

attains its mazimum value [cf. [Tamal, Proposition 3.1]; a similar statement holds
for Y. Now by considering the respective outer actions of Gy, , G, on the maz-
imal pro-l quotients of Ax, Ay, for some [ € T, we obtain that a preserves the
decomposition groups of cusps [hence that X is of type (g, ) if and only if Y is of
type (g,7)], by [Mzk9], Corollary 2.7, (i). This completes the proof of assertions
(i), (ii) in the finite field case.

Next, let us assume that kx, ky are nonarchimedean local. Then the portion
of assertion (i) concerning ¥ x = ZE(, Sy = E{, follows by considering the cohomo-
logical dimension of I1x, Iy — cf., e.g., Proposition 1.3, (ii) [in the proper case].
As for assertion (ii), if the cardinality of ¥ LIt s > 2, then assertion (ii) follows
from the evident pro-¥ analogue of [Mzk5|, Lemma 1.3.8; if the cardinality of X is
1, then assertion (ii) follows from Lemma 1.17, (c), (d) below. Now the portion of
assertion (i) concerning the residue characteristics of kx, ky follows from assertion
(ii) and [Mzk5], Proposition 1.2.1, (i); the fact that « preserves the decomposition
groups of cusps [hence that X is of type (g,7) if and only if Y is of type (g,7)]
follows from [Mzk9], Corollary 2.7, (i). This completes the proof of assertions (i),
(ii) in the nonarchimedean local field case.

Finally, we consider assertion (iii). It follows from the definitions that « induces
an isomorphism Myx = My. If, moreover, Z% — X, Zi, — Y are diagonal
coverings corresponding to [connected] finite étale Galois coverings X' — X, Y’ —
Y that arise from open subgroups of IIx, [Ty that correspond via «, then o induces
an isomorphism of group cohomology modules

H?*(g , Mx) = H?*(Uz, , My)

that preserves the extension classes associated to fundamental extensions of Iz, ,
Iz, [cf. Proposition 1.6, (i)]. In particular, if D’ (respectively, £’) is a fundamental
extension of ITz, (respectively, II Z;,), then « induces an isomorphism

D =E

which is compatible with the morphisms My — My, 11 Zt | z;, already induced
by «, and, moreover, uniquely determined, up to cyclotomically inner automor-
phisms, and the action of (k‘;()/\ (respectively, (k:;ﬁ)/\) [cf. Proposition 1.4, (ii)]. On
the other hand, by allowing X', Y’ to vary, taking symmetrizations of the fundamen-
tal extensions involved [which may be constructed entirely group-theoretically!], and
making use of the vertical morphism in the center of the diagram of Proposition
1.9, (ii) [again an object which may be constructed entirely group-theoretically!],
it follows from Proposition 1.9, (iii), th%\t the iadeterminacy of the isomorphism
X
)

D' = &' arising from the action of (k¥)", (ky)" “converges to the identity inde-

terminacy” [i.e., by taking D’ = £’ to arise as just described from an isomorphism
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of fundamental extensions D" = £” associated to [connected] finite étale coverings
X" — X', Y"” — Y’ [that arise from open subgroups of IIx, ITy that correspond
via «], where the open subgroups Ilx» C Ilx/, Ty~ C Iy are sufficiently small].
Thus, in light of the manifest functoriality of the vertical morphism in the center
of the diagram of Proposition 1.9, (ii) [the detailed explication of which, in terms
of various commutative diagrams, is a routine task which we leave to the readerl!],
we obtain an isomorphism

{Si} = {7}

of pro-symmetrized fundamental extensions [cf. Definition 1.10, (iii)] of IIxxx,
IIy «y, respectively, which arises from « and is completely determined up to cyclo-
tomucally inner automorphisms. Here, we pause to note that although in the con-
struction of the symmetrization of a fundamental extension D’ (respectively, £'),
one must, a priori, contend with a certain indeterminacy with respect to Ax, x {1}-
(respectively, Ay x {1}-)inner automorphisms [cf., e.g., Proposition 1.9, (ii)], in
fact, by allowing X', Y’ to vary, this indeterminacy also “converges to the identity
indeterminacy” [cf. Remark 1.9.1].

Thus, in summary, « induces an isomorphism [well-defined up to cyclotomically
[or, alternatively, cuspidally] inner automorphisms|

Soo = Too

of pro-fundamental extensions of Il x« x, Ily «y, respectively. Moreover, by apply-
ing the fact that the left-hand square of the commutative diagram of Proposition
1.12, (ii), is cartesian, together with the fact that the “canonical section” of “C;E”
that appears in Proposition 1.12, (iii), is completely determined [cf. Proposition
1.12, (v); Lemma 1.11] by the condition that it lie under an arbitrary “equivariant
section” [cf. Proposition 1.12, (iv)] of the “(};” associated to coverings “X" — X7
arising from arbitrarily small open subgroups I1x~ C Ilx, it follows that the isomor-
phism S.o = 7o just obtained is compatible with the pro-fundamental inclusions
Dx — S, Dy — 7. In particular, by Proposition 1.14, (ii) [cf. also Proposition
1.12, (i)], we conclude that « induces an isomorphism [well-defined up to cuspidally
inner automorphisms|

(Soo ~ ) Hc—ab ~ Hc—ab ( o~ Too)

Uxxx Uy xvy

which is compatible with the natural inclusions Dx — H%};bxx, Dy — H%}jiy.
Finally, the functoriality of this isomorphism follows from the naturality of its

construction. ()

Remark 1.16.1. It follows immediately from the naturality of the constructions
used in the proof of Theorem 1.16, (iii), that when “a” arises from an isomorphism
of schemes X = Y, the resulting o> of Theorem 1.16, (iii), coincides with the
morphism induced on fundamental groups by the resulting isomorphism of schemes
Uxxx — Uyxy.
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Lemma 1.17. (Normal Subgroups of the Absolute Galois Group of
a Nonarchimedean Local Field) Let k be a nonarchimedean local field of
residue characteristic p; write Gy for the absolute Galois group of k. Also, let
us write I C Gy, for the inertia subgroup of Gy and W C I for the wild inertia
subgroup. [Here, we recall that W is the unique Sylow pro-p subgroup of I.] Let
H C Gy be a closed subgroup that satisfies [at least] one of the following four
conditions:

(a) H is a finite group.
(b) H commutes with W.

(¢) H is a pro-prime-to-p group [i.e., the order of every finite quotient
group of H is prime to p] that is normal in Gj.

(d) H is a topologically finitely generated pro-p group that is normal

Then H = {1}.

Proof. 1Indeed, suppose that H satisfies condition (a). Then the fact that H = {1}
follows from [NSW], Corollary 12.1.3, Theorem 12.1.7. Now suppose that H satisfies
condition (b). Then by the well-known functorial isomorphism [arising from local
class field theory] between the additive group underlying a finite field extension
of k that corresponds to an open subgroup J C Gy and the tensor product with
Q, of the image of W[ J in the abelianization J2P, it follows immediately that
the conjugation action of H on W is nontrivial, whenever H is nontrivial. Thus
we conclude again that H = {1}. Next, suppose that H satisfies condition (c).
Then since H, W are both normal in Gy, it follows [by considering commutators
of elements of H with elements of W] that arbitrary elements of H commute with
arbitrary elements of W. In particular, H satisfies condition (b), so we conclude
yet again that H = {1}.

Finally, we assume that H is nontrivial and satisfies condition (d). Then I
claim that H has trivial image Im(H) in Gy /W. Indeed, since I/W, Im(H) are
normal in Gy /W, and, moreover, I /W is pro-prime-to-p, it follows that these two
groups commute. On the other hand, since, as is well-known, Gy /I acts faithfully
[by conjugation, via the cyclotomic character] on I/W, it thus follows that Im(H)
is trivial, as asserted. Thus, H C W. Since [as in well-known — cf., e.g., the proof
of [Mzk4|, Lemma 15.6] W is a free pro-p group of infinite rank, we thus conclude
that there exists an open subgroup U C W [so U is also a free pro-p group of infinite
rank| containing H such that the natural map

Hab ® Fp _ Uab ® ]Fp

is injective, but not surjective. Then it follows immediately from the well-known
theory of free pro-p groups that there exists a set of free topological generators
{& }ier [so the index set I is infinite] of U such that for some finite subset J C I,
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the elements {&;};cs lie in and topologically generate H. On the other hand, since
H is normal in U, it follows from the well-known structure of free pro-p groups that
we obtain a contradiction. This completes the proof of Lemma 1.17. ()

Remark 1.17.1. The author would like to thank A. Tamagawa for informing
him of the content of Lemma 1.17.

Definition 1.18. In the situation of Theorem 1.16, (i), (ii), suppose further that

Yy = Dy; write ¥ ¥ Ny = Oy

(i) If, for every finite étale covering X’ — X of X arising from an open subgroup
Iy C IIx, it holds that the map from (X’)°* [cf. §0] to conjugacy classes of closed
subgroups of Il x/ given by assigning to a closed point its associated decomposition
group is injective, then we shall say that X is X-separated.

(ii) If the map induced by « on closed subgroups of I x, ITy induces a bijection
between the decomposition groups of the points of X+, Yt then we shall say
that « is quasi-point-theoretic. If « is quasi-point-theoretic, and, moreover, X, Y
are X-separated — in which case « induces bijections

XC] :> YC], XCI—I— :) YCH—
— then we shall say that « is point-theoretic.

(iii) Suppose further that we are in the finite field case. Then we shall say
that a is Frobenius-preserving if the isomorphism Gy, — G, induced by a [cf.

Theorem 1.16, (ii)] maps the Frobenius element of Gj, to the Frobenius element
of G ky -

Remark 1.18.1. In the finite field case, when T = i]3timesT, the Frobenius
element of G, may be characterized as in [Tama], Proposition 3.4, (i), (ii); a
similar statement holds for the Frobenius element of Gy,.. [Moreover, in the proper
case, the Frobenius element of (G;, may be characterized as the element of Gy,
that acts on Mx via multiplication by the cardinality of kx, i.e., the cardinality of
HY (G, Mx) plus 1.] Thus, when X = PBrimes’, any a as in Theorem 1.16, (i),
(ii), is automatically Frobenius-preserving.

Remark 1.18.2. Let us suppose that we are in the situation of Definition 1.18,
and that the base fields kx, ky are finite. Let us refer to as a quasi-section [of
ITx — Gp, | any closed subgroup D C IIx [i.e., such as a decomposition group of a
point € X! that maps isomorphically onto an open subgroup of Gy, . Let us refer
to a quasi-section of IIx — G, as a subdecomposition group if it is contained in
some decomposition group of a point € X

(i) Since X is not necessarily Y-separated, it is not necessarily the case that
decomposition groups of points € X are commensurably terminalin IIx [cf. Propo-
sition 2.6, (ii), below]. On the other hand, if D C Ilx is a quasi-section, and we
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write B &' Chy (D) C IIx for the commensurator of D in IIx [cf. §0], then one ver-
ifies immediately E is also a quasi-section. [Indeed, by considering the projection
IIx — Gy, it follows immediately that every element of E' centralizes some open
subgroup D’ C D; on the other hand, by considering the well-known properties of
the action of open subgroups of GG on abelianizations of open subgroups of Ax
[i.e., more precisely, the “Riemann hypothesis for abelian varieties over finite fields”
— cf., e.g., [Mumf], p. 206], it follows that every centralizer of D" in Ax is trivial,
ie., that E(VAx = {1}]

(ii) It is immediate that any maximal subdecomposition group of Iy is, in fact,
a decomposition group of some point € X°. On the other hand, since X is not
necessarily Y-separated, it is not clear whether or not every decomposition group
of a point € X is necessarily a maximal subdecomposition group. If X, Y are
Y-separated, then the arguments of [Tama|, Corollary 2.10, Proposition 3.8, yield a
“group-theoretic” characterization of the subdecomposition groups [hence also of the
maximal subdecomposition groups, i.e., the decomposition groups of points € X°!]
of Il x, IIy in terms of the actions of the Frobenius elements. That is to say, if X,
Y are X-separated, then any Frobenius-preserving isomorphism « is [quasi-]point-
theoretic.

(iii) Nevertheless, as was pointed out to the author by A. Tamagawa, even
if X, Y are not necessarily X-separated, it is still possible to conclude, essentially
from the arguments of [Tama], Corollary 2.10, Proposition 3.8, that:

Any Frobenius-preserving isomorphism « is quasi-point-theoretic.

Indeed, it suffices to give a “group-theoretic” characterization of the quasi-sections
D C IIx which are decomposition groups of points € X°\. We may assume [for

simplicity] without loss of generality that X, Y are proper. Write E def Cry (D);
kp, kg for the finite extension fields of kx determined by D, E. Let H C Ax be
a characteristic open subgroup; denote by Y — X the covering determined by the
open subgroup F - H C Ilx. Then it follows immediately from the definition of a
“decomposition group” that it suffices to give a “group-theoretic” criterion for the
condition that Y (kp) contain a point whose field of definition [which is, a priori,
some subextension in kp of kg| is equal to kp. In [Tama|, the Lefschetz trace
formula is applied to compute the cardinality of Y (kp). On the other hand, if we
use the superscript “fld-def” to denote the subset of points whose field of definition
is equal to the field given in parentheses, and “| — |” to denote the cardinality of a
finite set, then for any subextension & C kp of kg, we have

|Y(k,)| _ Z |Y(kll)ﬂd—def|

k//

[where k" C k' ranges over the subextensions of kg|. In particular, by applying
induction on [k’ : kg], one concludes immediately from the above formula that
Y (k") id-def] may be computed from |Y'(k”)| for subextensions k" C k' of kg [while
Y (k")| may be computed, as in [Tama|, from the Lefschetz trace formula]. This
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yields the desired “group-theoretic” characterization of the decomposition groups
of I1 X

Remark 1.18.3. Note that in the finite field case, if a as in Theorem 1.16, (i),
(ii), is Frobenius-preserving, then the cardinalities, hence also the characteristics,
of kx, ky coincide. Indeed, this follows immediately by reducing to the proper case
via Theorem 1.16, (i), and considering the actions of G, Gk, [cf. Theorem 1.16,
(ii)] on My, My [which are compatible relative to the isomorphism Mx = My
induced by «].

Now we return to the notation of the discussion preceding Theorem 1.16. Ob-
serve that the automorphism

T: XXX —-XxX

given by switching the two factors induces an outer automorphism of Iy, . More-
over, by choosing the basepoints used to form the various fundamental groups in-
volved in an appropriate fashion, it follows that there exists an automorphism

1L - HUXXX - HUXXX

among those automorphisms induced by 7 [i.e., all of which are related to one
another by composition with an inner automorphism| which induces the automor-
phism on IIxyx = Illx x¢g, lIx given by switching the two factors; preserves the
subgroup Dx C Iy, ; and preserves and induces the identity automorphism on
the subgroup Ix C Dx (C Iy, ). Note that by the slimness of Proposition
1.8, (i), together with the well-known commensurable terminality of Dx C Iy,
in Iy, [cf., e.g., [the proof of] [Mzk5], Lemma 1.3.12], it follows that, at least
when ¥ = Primes, these three conditions [are more than sufficient to] uniquely
determine 1L, up to composition with an inner automorphism arising from [x; one
then obtains a natural IL. for arbitrary ¥ [well-defined up to composition with an
inner automorphism arising from Ix| by taking the automorphism induced on the
appropriate quotients by “IL. in the case X = Primes”.

Proposition 1.19. (Switching the Two Factors) The automorphism

c-ab . trc-ab c-ab
HT : HUXXX - HUXXX

mduced by 1L is the unique automorphism of the profinite group H?jibxx, up to
composition with a cuspidally inner automorphism, that satisfies the following two
conditions: (a) it preserves the quotient H‘fjibxx — Ilxxx and induces on this
quotient the automorphism on llxxx = Illx Xqg, Illx given by switching the two

factors; (b) it preserves the image of Ix C Dx — H‘;J‘;bxx.

Proof. This follows immediately from Proposition 1.15, (i). O
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Section 2: Points and Functions

We maintain the notation of §1 [i.e., the discussion preceding Theorem 1.16].
If z € X, then we shall denote by

DngX

the decomposition group of x [well-defined up to conjugation in Ix]. If x € X (k),
then D, determines a section s, : G — Ilx [which is well-defined as a geometrically
outer homomorphism)|.

Next, let S C X be a finite set. If n is a X-integer [cf. §0], then the Kummer
exact sequence
1l—-pu, -Gy -Gy —1

[where G, — Gy, is the n-th power map; p,, is defined so as to make the sequence
exact] on the étale site of X determines a homomorphism Pic(X) — H?(Ax, pn)
[where Pic(X) is the Picard group of X|. Now there is a unique isomorphism

P = Mx/n-Mx

such that the homomorphism Pic(X) — H?(Ax, p,,) sends line bundles of degree
1 to the element determined by 1 € Z/nZ via the composite of the induced iso-
morphism H?(Ax, p,) — H?*(Ax, Mx/n- Mx) with the tautological isomorphism
H?(Ax, Mx /n-Mx) = Z/nZ |cf. Proposition 1.2, (i)]. In the following discussion,
we shall identify u,, with Mx /n - Mx via this isomorphism.

If we consider the Kummer exact sequence on the étale site of Us C X [and
pass to the inverse limit with respect to n], then we obtain a natural homomorphism

L'(Us, Op,) — H(Ty,, Mx)

[where we note that here, it suffices to consider the group cohomology of Il [i.e.,
as opposed to the étale cohomology of Ug], since the extraction of n-th roots of an
element of I'(Usg, O{js) yields finite étale coverings of Ug that correspond to open
subgroups of ;] which is injective [since the abelian topological group I'(Us, O )
is clearly topologically finitely generated and free of p'-torsion, hence injects into
its prime-to-p! completion] whenever ©f = ‘BtimesT. In particular, by allowing S
to vary, we obtain a natural homomorphism

K% —lim H'(Ilyg, Mx)
s

[where Kx is the function field of X; the direct limit is over all finite subsets S of
X°] which is injective whenever $T = Primes'.

Proposition 2.1. (Kummer Classes of Functions) If S C X is a finite
subset, write
Ay = AGE - AF
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for the maximal cuspidally abelian and maximal cuspidally central quo-
tients, respectively, and
Iy

c-ab c-cn
S - HUS - HUS

for the corresponding quotients of Uy,. If x € X, then let us write
D, [Us] C Iy,

for the decomposition group of x in Iy, [which is well-defined up to conjugation

in Hy,/ and I,[Us] C D,[Us]| for the inertia subgroup. [Thus, when x € S, we

obtain [cf. Proposition 1.6, (ii), (iii)] a natural isomorphism of Mx with I,[Ug] Lof

D.[Us|NAuvs -/

(i) The natural surjections induce isomorphisms as follows:

H' (115", Mx) & HY(IIGY, Mx) = H'(Ilyy, Mx)
In particular, we obtain natural homomorphisms as follows:
I'(Us, O;}S) — Hl(Hgg“,Mx) = Hl(Hggb,MX) = HY(My,, M)
K% —lim HY(IIGE, My) = lig H'(II§2°, Mx) = lig H*(Iy,, Mx)
s s s

These natural homomorphisms are injective whenever X1 = ’BtimesT.

(ii) Suppose that S C X (k) is a finite subset. Then restricting cohomology
classes of Iy to the various I,[Us]|, for x € S, yields a natural exact sequence

1— (k:x)/\ — Hl(HUS,MX) — <@ 2T>
z€S

[where we identify Homs; (I.[Us], Mx) with 2T/ Moreover, the image [via the
natural homomorphism given in (i)] of T'(Us, Of) in H' (Iy,, Mx) /()" is equal
to the inverse image in H'(Iy,, Mx)/(k*)" of the submodule of

(D 2)<(D)

determined by the principal divisors [with support in S]. A similar statement
holds when “Iyg” is replaced by “H‘fjgb 7 or g

(iii) If f € T(Ug, OF), write
KGN € HY(IIGS, My);  w5°P € HY(IIG™, Mx);  ky € H' (Iyy, Mx)

for the associated Kummer classes. If v € X\S, then D,[Us] maps, via the
natural surjection Iy, — Gy, isomorphically onto the open subgroup Gy C G
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[where k(x) is the residue field of X at x]. Moreover, the images of the pulled back
classes

ﬁ(}_cn|Dz[Us] — ’{(}_alez[Us] = l{/f|D:1:[US] c Hl(Dx[US],MX) = Hl(Gk(x)7MX)
= (k(2))"

in (k(z)*)" are equal to the image in (k(x)*)" of the value of f at z.

Proof. Assertion (i) follows immediately from the definitions. The exact sequence
of assertion (ii) follows immediately from Proposition 1.4, (ii). The characterization
of the image of I'(Us, O ) is immediate from the definitions and the exact sequence
of assertion (ii). Assertion (iii) follows immediately from the definitions and the
functoriality of the Kummer class. ()

Remark 2.1.1. If, in the situation of Proposition 2.1, (iii), we think of the
extension of II;2" of Ilx as being given by the extension Dg [cf. Proposition 1.8,
(iii)], where D is a fundamental extension of Ilxxx that appears as a quotient of
Iy,  [hence is “rigid” with respect to the action of (k* )/\ — cf. Proposition 1.9,
(iii); the proof of Theorem 1.16, (iii)], then it follows that the image of D, [Us] in
IT5;¢" may be thought of as the image of D,[Us] in Ds. If, moreover, we assume,
for simplicity, that = € X (k), S C X (k), then this image of D,[Us] in Dg amounts
to a section of Dg — Ilx — Gy lying over the section s, of IIx — Gj. Since
Ds is defined as a certain fiber product, this section is equivalent to a collection of
sections [regarded as cyclotomically outer homomorphisms]

Yy, i Gk — Dy.o

[where y ranges over the points of S]. [Here, we note that it is immediate from the
definitions that, as the notation suggests, 7, ., depends only on z, y — i.e., that
Vy,z 18 independent of the choice of S.] That is to say, from this point of view,
Proposition 2.1, (iii), may be regarded as stating that:

The image in (kX)" = (k(z)*)" of the value of a function € I'(Us,Op,)
at © € X (k) may be computed from its Kummer class, as soon as one
knows the sections vy, : G — Dy 5, for y € S.

Also, before proceeding, we note that an arbitrary section of D, , — G}, differs [as
a cyclotomically outer homomorphism] from =, , by the action of an element of
HY(Gj, Mx) = (k*)". Thus, the datum of “vy,2” may be regarded as a trivializa-

tion of a certain (k*)" -torsor.

Remark 2.1.2. The finite field portion of Proposition 2.1 may be regarded as the
evident finite field analogue of [a certain portion of] the theory of [Mzk8], §4. Also,
we observe that the approach of “reconstructing the function field of the curve via
Kummer theory, as opposed to class field theory [as was done in [Tamal, [Uchil]”
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has the advantage of being applicable to nonarchimedean local fields, as well as to
finite fields.

Definition 2.2.  For z,y € X (k), we shall refer to the section [regarded as a
cyclotomically outer homomorphism]|

Yy,x - Gk - Dy,x

as the Green’s trivialization of D at (y,x). If D is a divisor on X supported in the
subset of k-rational points X (k) € X, then multiplication of the various Green’s
trivializations for the points in the support of D determines a section [regarded as
a cyclotomically outer homomorphism|

YD,z * Gk: - DD,IIZ

which we shall refer to as the Green’s trivialization of D at (D, z). [Note that the
definition of vyp , generalizes immediately to the case where the divisor D, but not
necessarily the points in its support, is rational over k — cf. Remark 1.10.1.]

Remark 2.2.1. The terminology of Definition 2.2, is intended to suggest the
similarity between the ~, , of the present discussion and the “Green’s functions”
that occur in the theory of bipermissible metrics — cf., e.g., [MB], §4.11.4.

Remark 2.2.2. Note that the Green’s trivializations are symmetric with respect
to the involution of D induced by the automorphism ISP of Proposition 1.19.
Indeed, relative to the natural projections

]‘_‘[UXXX - H(I:J_ibxx - D

the Green’s trivialization at (y,x) is simply the section of D — G} arising [by
composition] from the section of Iy, , — G} determined by the decomposition
group of the point (y,x) € Uxxx (k). Thus, the asserted symmetry of the Green’s
trivializations follows from the fact that ISP is compatible with I1,, together with
the evident fact that [by “transport of structure”] II. maps the decomposition
group of (y,x) € Ux x (k) isomorphically onto the decomposition group of (z,y) €
Uxxx (k).

If d € Z, denote by J? the subscheme of the Picard scheme of X that parame-

trizes line bundles of degree d; write J et yo, Thus, J? is a torsor over J. Note
that there is a natural morphism X — J! [given by assigning to a point of X the
line bundle of degree 1 determined by the point]. Thus, the basepoint of X [already
chosen in §1] determines a basepoint of J!. At the level of “geometrically pro-%”
étale fundamental groups, this morphism induces a surjective homomorphism

HX_»HJI
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whose kernel is the kernel of the maximal abelian quotient Ax —» A%}f’ . In partic-
ular, for z € X (k), the section s, determines a section ¢, : G — II;i. Note that
applying the “change of structure group” given by the “multiplication by d map”
on J to the J-torsor J! yields the J-torsor J¢. [Indeed, this follows by considering
the group structure of the Picard scheme.] Thus, we obtain a morphism J! — J¢
whose induced morphism on fundamental groups

HJl —>HJd

determines an isomorphism of 11 jo with the push-forward of the extension I ;1 [i.e.,
of Gy by Ay =2 A%P] via the homomorphism A% — A% given by multiplication
by d. When d > 1, the group structure on the Picard scheme also determines a
morphism

I] mn — 1.

[where the product is a fiber product over Gy, of d factors of II ;1| which determines
an isomorphism of Il ;o with the push-forward of the extension constituted by the
fiber product via the homomorphism [JA%® — A% [i.e., from a product of d
copies of A3 to A" given by adding up the d components]. Moreover, one verifies
immediately that when d > 1, these two constructions of “Il ;«” from II;: yield
groups that are naturally isomorphic.

Thus, by applying the various homomorphisms induced on fundamental groups
by the group structure of the Picard scheme, it follows that if D is any divisor of
degree d on X whose support lies in the set of k-rational points X (k) C X, then
D determines a section

t D - Gk — II Jd

which may be constructed entirely group-theoretically from the “t,”, where x €
X (k) ranges over the points in the support of D. In particular, if D is of degree 0,
then the section tp : G — II; may be compared with the identity section of 11;
to obtain a cohomology class:

np € H'(Gy, AY)
Now we have the following well-known result:
Proposition 2.3. (Points and Galois Sections) Suppose that ¥ = Primes.
Then, in the notation of the above discussion:
(i) The divisor D is principal if and only if np = 0.
(ii) The map x — D, from X to conjugacy classes of closed subgroups of I x

1s injective, i.e., X is Primes-separated.

Proof. First, we consider assertion (i). By well-known general nonsense [cf., e.g.,
[Naka], Claim (2.2); [NTs|, Lemma (4.14); [Mzk4], the Remark preceding Definition
6.2], there is a natural isomorphism

H' (k, AR) = J(k)" (2 J (k)
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[where the “A” denotes the profinite completion| which maps np to the element of
J(k) determined by D. [Here, we recall that this natural isomorphism arises by
considering the long exact sequence obtained by applying the functors H*(Gy, —)
to the short exact sequence of G-modules

1— J(k)[n] — J(k) — J(k) — 1

— where n is a positive integer; the morphism .J (k) — J(k) is the “multiplication

by n map”; J(k)[n] is defined so as to make the sequence exact.] Thus, assertion
(i) follows immediately.

To prove assertion (ii), it suffices [by possibly base-changing to a finite exten-
sion of k] to verify that two points z1, zo € X (k) that induce A x-conjugate sections
Sz, , Sz, are necessarily equal [cf. also [Tamal, Corollary 2.10]. But this follows for-
mally from assertion (i), by considering the divisor x; — xo [and the well-known
fact that the natural morphism X — J! considered above is an embedding]. O

Remark 2.3.1. From the point of view of Definition 1.7, (ii), the reader may feel
tempted to expect that [still under the assumption that ¥ = Primes| D is principal
if and only if the extension Dp of IIx [by Mx] is trivial [i.e., determines the zero
class in H?(ITx, Mx)]. When k is nonarchimedean local, it is not difficult to verify,
using Proposition 2.3, (i), that this is indeed the case. On the other hand, when k
is finite, although this condition for principality is easily verified to be necessary,
it is not, however, sufficient, since it only involves the “prime-to-p’ portion” of the
point of J(k) determined by D.

Definition 2.4. In the situation of Theorem 1.16, (iii), suppose further that

(% d:ef) Yx = Yy, and that « is point-theoretic. Let S C X be a [not necessarily

finite] subset that corresponds via the bijection X = Yl induced by [the point-
theoreticity of] a to a subset T C Y.

(i) Write D (respectively, £) for the fundamental extension of IIx x (respec-
tively, Iy «y) that arises as the quotient of Hgibxx (respectively, Hf}j‘iy) by the

kernel of the maximal cuspidally central quotient Af}ibxx - A (respectively,

AGEP - — AGe ) [cf. Proposition 1.8, (iv)]. Thus, a“" induces an isomorphism:

Q"D 5 E

We shall say that « is (S,T)-locally Green-compatible if, for every pair of points
(x1,22) € X(kx) x X(kx) corresponding via the bijection induced by « to a pair
of points (y1,y2) € Y(ky) x Y(ky), such that x5 € S, yo € T, the isomorphism

~

,Dw17$2 - g’!/lay2

[obtained by restricting a®"| is compatible with the Green’s trivializations. We
shall say that « is (S, T)-locally degree zero (respectively, (S,T)-locally principally)
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Green-compatible if, for every © € X(kx)()S and every divisor of degree zero
(respectively, principal divisor) D supported in X (kx) € X! corresponding via the
bijection induced by « to a pair (y, E) of Y [so y € Y (ky) (7], the isomorphism

DD,:C :> EE,y
is compatible with the Green’s trivializations.

(ii) We shall say that « is totally (S, T)-locally Green-compatible (respectively,
totally (S, T)-locally degree zero Green-compatible; totally (S,T)-locally principally
Green-compatible) if, for all pairs of connected finite étale coverings X' — X,
Y’ — Y that arise from open subgroups of Iy, Iy that correspond via «, the
isomorphism

HX/ = Hy/

induced by « is (S’,7")-locally Green-compatible (respectively, (S’,T")-locally de-
gree zero Green-compatible; (S’,T")-locally principally Green-compatible), where
S C (XN, T C (Y')! are the inverse images in X', Y’ of S, T, respectively.

(iii) With respect to the terminology introduced in (i), (i), when S = X<,
T = Y, then we shall replace the phrase “(.S, T)-locally” by the phrase “globally”.

Remark 2.4.1. In the situation of Definition 2.4, if X’ — X, Y’ — Y are con-
nected finite étale coverings that arise from open subgroups of Ilx, Iy that corre-
spond via a; D = £ is the isomorphism of fundamental extensions of I x x x, Iy xy
that arises from the isomorphism a“#" of Theorem 1.16, (iii); and the points z1, o
(respectively, y1, y2) are Ax- (respectively, Ay-) conjugate, then it follows imme-

diately from the compatibility of a°*P with the natural inclusions Dx < H?jibxx,

Dy — I [ef. Theorem 1.16, (iii)] that the isomorphism Dy, o, — &y, 4, is
automatically compatible with the Green’s trivializations. [Indeed, this follows from
the easily verified fact that the Green’s trivializations in this case are, in essence,
specializations of conjugates of the “canonical sections of C; ” of Proposition 1.12.]
Unfortunately, however, the author is unable, at the time of writing, to see how
to generalize the argument applied in the proof of Theorem 1.16, (iii), involving
Lemma 1.11; Proposition 1.12, (v), so as to cover the case where the points x;, x2

(respectively, y1, y2) fail to be Ax- (respectively, Ay-) conjugate.

Remark 2.4.2. It is immediate that (S5, T)-local Green-compatibility (respec-
tively, (9, T')-local degree zero Green-compatibility) implies (.5, T")-local degree zero
Green-compatibility (respectively, (.S, 7T")-local principal Green-compatibility), and
that total (S,7T)-local Green-compatibility (respectively, total (S,T)-local degree
zero Green-compatibility) implies total (S, T')-local degree zero Green-compatibility
(respectively, total (S, T')-local principal Green-compatibility).

Theorem 2.5. (Reconstruction of Functions) In the situation of Theorem

1.16, (iii), suppose further that (% d:ef) Yx = Xy, and that o is point-theoretic.

Then:
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(i) Let S C Xd, T C Y pe finite subsets that correspond via the bijection
X 5 v induced by . Then a, o induce isomorphisms [well-defined up to
cuspidally inner automorphisms/

c-ab ™~ c-ab
HUS — HVT

[where Vi def Y\T'] lying over o, which are functorial with respect to o and S, T,
as well as with respect to passing to connected finite étale coverings of X, Y
[that do not necesarily arise from open subgroups of Il x, Ty !].

(ii) Suppose that ¥ = PBrimes. Then the bijection X = Y induced by o in-
duces a bijection between the groups of principal divisors on X, Y. This bijection,
together with the isomorphisms of (i), induces a compatible isomorphism

A~ A
Kx-(kx) = Ky - (ky)

between the push-forwards of the multiplicative groups associated to the function

fields of X, Y, relative to the homomorphisms ki — (k:;()/\, ky — (k;ﬁ)/\

Proof. Assertion (i) follows immediately by “specializing to S, T'” the isomorphism
of Theorem 1.16, (iii) [cf. also Proposition 1.14, (i), (ii); the definitions of the
various objects involved]. [Here, we note that the functoriality asserted in assertion
(i), which is somewhat stronger than the functoriality asserted in Theorem 1.16,
(iii), follows from the definitions, together with the naturality of the constructions
applied in the proof of Theorem 1.16, (iii) — cf., e.g., the diagram of Proposition
1.9, (ii).] Assertion (ii) follows immediately from assertion (i); Proposition 2.3, (i);
Proposition 2.1, (i), (ii). O

Remark 2.5.1. In fact, the crucial isomorphism H‘fjgb = H%}?b of Theorem
2.5, (i), may also be constructed, in the finite field case, via the techniques to
be introduced in §3 [although we shall not discuss this approach in detail; cf.,
however, the proof of Theorem 3.10]. On the other hand, observe that unlike
the techniques of §3, the techniques of §1 [in particular, the proof of Theorem 1.16,
(iii), via Propositions 1.9, 1.12] apply to situations [e.g., the case of nonarchimedean
local fields!] where the weight filtration [cf. §3] does not admit a Galois-invariant
splitting. Indeed, the techniques of §1, essentially only require that the Galois
cohomology of the base field admit a natural duality pairing. Moreover, even in the
finite field case, in light of the importance of this isomorphism H‘fjgb = H‘{};?b in
the theory of the present paper, it is of interest to see that this isomorphism may
be constructed via two fundamentally different approaches. Finally, although the
techniques of §3 are better suited to the reconstruction of the Green’s trivializations,
they have the drawback that they depend essentially on the choice of a “basepoint”
x, € X (k). Thus, it is of interest to know that this isomorphism may be constructed
[i.e., via the techniques of §1] “cohomologically” [cf. Proposition 1.6, (i)] without
making such a choice.
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Remark 2.5.2. In the case of nonarchimedean local fields, it is natural to ask,
in the style of [Mzk8], §4, whether or not various “canonical integral structures” on
the extensions D, , [where z,y € X (k)] of Gj by Mx are preserved by arbitrary
isomorphisms of arithmetic fundamental groups. When = # y, such a canonical
integral structure is determined by the Green’s trivialization; when x = y, such a
canonical integral structure is determined by the integral structure [in the usual
sense of scheme theory] on the canonical sheaf of the stable model of the curve
[when the curve has stable reduction] — cf. [Mzk8], §4.

b »

Before proceeding, we note the following “analogue for IIf;2"” of Proposition

1.15, (i):

Proposition 2.6. (Automorphisms and Commensurators) Let H‘;]‘:b be

as in Proposition 2.1. For x € S, write D,[Ug] — H‘fjgb for the natural inclusion.
Then:

(i) Any automorphism « of the profinite group H?jgb which
a) is compatible wi e natural surjection IIG*° — Ilx and induces the
‘ tible with the natural surjection IIG* — Ilx and induces th
tdentity on Ilx;
or each x© € S, preserves the image of Mx = I,[Us] C D,[Ug| via the
b h S the 1 My = I,[Us| C D,[Us| via th
natural inclusion Dy [Usg] — TI§2P
1s cuspidally inner.

(ii) Suppose that X is Y-separated. Then for x € S, D, is commensurably
terminal in IIx.

(iii) Suppose that X is Y-separated. Then the image of D,[Ug] — H%}Sb is
commensurably terminal in H‘Egb.

Proof. First, we observe that assertion (ii) follows formally from the definition of a
“decomposition group” and “Y-separated”. Thus, assertion (i) (respectively, (iii))
follows by an argument which is entirely similar to the argument that was used to
prove assertion (i) (respectively, (iii)) of Proposition 1.15. O

Remark 2.6.1. In the situation of Definition 2.4, suppose that S, T are finite,
and that « arises from an isomorphism

Mys — vy

which is point-theoretic [or, equivalently, quasi-point-theoretic| — a condition that is
automatically satisfied in the finite field case whenever « is Frobenius-preserving [cf.
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Remark 1.18.2]. Then observe that, [in light of our point-theoreticity assumption)]
it follows from Proposition 2.6, (i), that the resulting induced isomorphism

c-ab ™~ c-ab
HUS — HVT

coincides [up to cuspidally inner automorphisms| with the isomorphism of Theorem
2.5, (i). Thus, in light of Remark 2.2.2, it follows formally from the definitions that
a is totally (S, T)-locally Green-compatible.

Corollary 2.7. (Point-theoretic Totally Locally Principally Green-

compatible Isomorphisms) In the situation of Theorem 1.16, (iii), assume fur-

ther that (3 d:ef) Yx = Xy = Primes, and that o is point-theoretic and to-

tally (S,7)-locally principally Green-compatible, for some nonempty sub-
sets S C X, T C Y which correspond via the bijection X' = Y induced by «.
Then « arises from a uniquely determined commutative diagram of schemes

X - Y
X 5 v

i which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale coverings determined by the profinite groups Ilx, 11y .

Proof. Corollary 2.7 follows immediately — i.e., by “specializing functions to
points” — from the definitions; Theorem 2.5, (ii); Proposition 2.1, (iii); Remark
2.1.1; and [Tamal, Lemma 4.7. Here, we note that, in the present situation, the
isomorphism
K% ()" = K- (k)"

of Theorem 2.5, (ii), necessarily induces an isomorphism K3 — Ky [cf. the as-
sumption that X = i]3time5T]. Indeed, this is immediate in the finite field case. In
the nonarchimedean local field case, it follows via the arguments applied in the proof
of [Mzk8], Theorem 4.10: That is to say, we assume for simplicity that S C X (kx);
then if f € K%, and « € S is a point that does not lie in the divisor of zeroes and
poles of f, then let us observe that the subset

foRSCr (k)"

may be characterized as the subset of elements whose values [cf. Proposition 2.1,
(iii)] at z lie in k% C (k';})A Note that since, for a given z1 € S, there clearly exist
[ € K% [at least after possibly passing to an appropriate connected finite étale
covering of X] that have a zero or pole at 27 but not at some other x € S, this
observation allows us to recover the canonical discrete structure [cf. [Mzk8], Defi-
nition 4.1, (iii); the proof of [Mzk8|, Theorem 4.10] on the decomposition groups in
H‘fj:? [where S; C X is an arbitrary finite subset containing S, which corresponds,
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say, to a subset Ty C Y that contains 7] at arbitrary points [i.e., arbitrary “z;”]
of S. Thus, by applying this canonical discrete structure [as in the proof of [Mzk§],
Theorem 4.10], we may recover the subset

foRSCF (k)"

for arbitrary f € K [i.e., even f that have a zero or pole at every point of 5] as
the subset of elements for which the restriction to each point x of S either lies in
kx C (k)x()A or [when the element in question has a zero or pole at x] is compatible
with the canonical discrete structure at x. Since this characterization of the subset
f-kx C f- (k)X()A is manifestly compatible [in light of the Green-compatibility
assumption on «] with the isomorphisms Hfjg? = H%};‘f’ induced by o, we thus
conclude that the isomorphism

A~ A
KX - (k%) = Ky - (ky)

of Theorem 2.5, (ii), maps the subset K C K5 - (k)X()A onto the subset Ky C
Ky - (k:;ﬁ)/\, as desired. O

Remark 2.7.1. Suppose, in the situation of Corollary 2.7, that S = X, T = Yl
Then unlike the situation discussed in [Tamal, one has the freedom to evaluate
functions at arbitrary points of the entire sets X, Y°!, as opposed to just certain
restricted subsets S C X<, T C Y. Thus, instead of applying [Tama], Lemma
4.7, one may instead apply the somewhat easier argument implicit in [Uchi|, §3,
Lemmas 8-11 [which is used to treat the function field case].

Thus, in light of Remark 2.6.1 [together with the portion of Theorem 1.16, (i),
concerning the preservation of decomposition groups of cusps], Corollary 2.7 implies
the following result, in the affine case:

Corollary 2.8. (Point-theoretic Isomorphisms in the Affine Case) Let
U, V be affine hyperbolic curves over a finite or nonarchimedean local
field. Suppose that ¥ = Primes. Write Ay (respectively, Ay ) for the maximal
cuspidally pro-Xf quotient of the maximal pro-Y quotient of the tame geo-
metric fundamental group of U (respectively, V') [where “tame” is with respect to
the complement of U (respectively, V') in its canonical compactification/, and Iy
(respectively, 1y, ) for the corresponding quotient of the étale fundamental group of
U (respectively, V' ). Then any point-theoretic isomorphism

g1y = Iy
arises from a uniquely determined commutative diagram of schemes

~
—

S — X
< — <

R
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i which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale coverings determined by the profinite groups Iy, 11y .

Remark 2.8.1. In light of the results of [Tama] [cf. Remarks 1.18.1, 1.18.2],
Corollary 2.8 is only truly of interest in the case of nonarchimedean local fields.

Definition 2.9. Suppose that k is a nonarchimedean local field.

(1) A [necessarily affine] hyperbolic curve U over k will be said to be of strictly
Belyi type if it is defined over a number field and isogenous [cf. §0] to a hyperbolic
curve of genus zero.

(ii) A [necessarily affine] hyperbolic curve U over k will be said to be of Belyi
type if it is defined over a number field, and, moreover, for some positive integer m,
there exists a finite sequence

U:UleQW...W m_lem

of hyperbolic orbicurves [cf. §0] U; such that U, is a tripod [cf. §0], and, moreover,
for each j =1,... ,m — 1, Uj; is related to U; in one of the following ways:

a) there exists a finite étale morphism U;,1 — U, li.e., “U;11 is a finite
J+ J J+
étale covering of U;”|;

(b) there exists a finite étale morphism U; — U,iq [i.e., “Ujy1 is a finite
étale quotient of U;”|;

c ere exists an open immersion U; — U, 1 [i.e., in the terminology o
there exist ' on U; < U1 [ie., in the terminology of
[Mzk8], “Uj+1 is a [hyperbolic] partial compactification of U;”];

(d) there exists a partial coarsification morphism [cf. §0] U; — Ujyq [ie.,
“Ujt1 is a partial coarsification of U;”].

(iii) A [necessarily affine] hyperbolic curve U over k will be said to be of quasi-
Belyi type if it is defined over a number field and admits a connected finite étale
covering V' — U such that V' admits a [not necessarily finite or étale!] dominant
morphism V' — W to a tripod W.

Remark 2.9.1. It is immediate that every hyperbolic curve of strictly Belyi type
is also of Belyi type [as the terminology suggests]. Moreover, one verifies easily by
“Induction on m” [where “m” is as in Definition 2.9, (ii)] that every hyperbolic
curve of Belyi type is also of quasi-Belyi type [as the terminology suggests]. It is
not difficult to see that there exist [multiply] punctured elliptic curves that are of
Belyi type, but not of strictly Belyi type [cf. Remark 2.13.2 below]. On the other
hand, it is not clear to the author at the time of writing whether or not there exist
hyperbolic curves of quasi-Belyi type that are not of Belyi type.
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Remark 2.9.2. Hyperbolic curves of strictly Belyi type are precisely the sort of
curves considered in [Mzk8|, Corollaries 2.8, 3.2.

Remark 2.9.3. The author would like to thank A. Tamagawa for useful discus-
sions concerning Definition 2.9, (ii), especially Definition 2.9, (ii), (d).

Proposition 2.10. (Decomposition Groups of Curves of Quasi-Belyi
Type) Let U (respectively, V') be a hyperbolic curve over a nonarchimedean
local field. Denote the base field of U (respectively, V') by ky (respectively, ky ), the
étale fundamental group of U (respectively, V') by Iy (respectively, Iy ) [i.e., “we
take ¥ = Primes”/]. Let

g1y = Iy

be an isomorphism of profinite groups. Then:

(i) If U is of quasi-Belyi type, then the closed points of “DLoc-type” [in the
sense of [Mzk8], Definition 2.4] are py-adically dense [where py is the residue
characteristic of ky [ in U(ky).

(i) If U is of quasi-Belyi type, then 3 maps every decomposition group of a
closed point of U isomorphically onto a decomposition group of a closed point of V.

(iii) If both U, V are of quasi-Belyi type, then (3 is point-theoretic.

(i) If U is of Belyi type, then so is V.

Proof.  The proof of assertion (i) is similar to the proof of [Mzk8|, Corollary 2.8:
That is to say, in the terminology of loc. cit., it follows formally from the fact that
U is of quasi-Belyi type that the “algebraic” closed points [i.e., closed points defined
over a number field, which are manifestly py-adically dense in U(ky)] of U are of
“DLoc-type” [cf. the proof of [Mzk8|, Corollary 2.8]: Indeed, it suffices to consider
the following commutative diagram of hyperbolic curves, whose existence follows
from the assumption that U is of quasi-Belyi type:

Vi — W — U — U

Lo

v «— 'V — W

Here, the “hooked arrow <" is an open immersion; all of the “non-hooked arrows”
except for V.— W, V' — W' are finite étale morphisms; V.— W, V' — W' are
dominant; the finite étale morphism U’ — U is obtained by a base-change to a
finite extension of the base field ky; and W is a tripod [so W' — W is a “Belyi
map”]. Note that the composite arrow V' — W' < U’ — U may be thought of
as an arrow in the category DLocy,, (U) of [Mzk8], §2. Observe, moreover, that the
arrow W’ < U’ may be chosen to have arbitrarily designated algebraic closed points
in the complement of its image. Thus, we conclude that this diagram exhibits the



ABSOLUTE ANABELIAN CUSPIDALIZATIONS 45

[arbitrarily designated] algebraic closed points in the complement of the image of
W' — U’ — U as points of DLoc-type, as desired. This completes the proof of
assertion (i).

In light of assertion (i) [applied to the various connected finite étale coverings of
U], the proof of assertion (ii) is entirely similar to the proof of [Mzk8], Corollary 3.2:
That is to say, by [Mzk8], Corollary 2.5, it follows that 5 maps decomposition groups
of DLoc-type of U to decomposition groups of DLoc-type of V. Thus, assertion (ii)
follows by applying [Mzk8], Lemma 3.1 [where the density statement of assertion (i)
concerning points of DLoc-type allows one to replace the “algebraicity” condition of
[Mzk8], Lemma 3.1, (iii), by the condition that the points in question be of DLoc-
type]. Finally, assertion (iii) follows formally from assertion (ii) [and Proposition
2.3, (ii)].

Finally, we consider assertion (iv). First, I claim that by applying the iso-
morphism 3 [and thinking of hyperbolic orbicurves as being represented by their
associated étale fundamental groups|, one may transform the sequence

U:UleQW...W m_lem
of Definition 2.9, (ii), into a sequence
V:V1M->V2M->...M-> m_lem

that also satisfies the conditions of Definition 2.9, (ii), in such a way that we also
obtain compatible isomorphisms (3; : ly, = Iy, [where j = 1,...,m; B = 3]
Indeed, we reason by induction on m. If [for j = 1,... ,m — 1] Uj4 is related to
U; as in (a) [of Definition 2.9, (ii)], then it is immediate [by thinking in terms of
open subgroups of Ily;, Ily,] that one may construct [from V;] a Vj; related to
V; as in (a). If Ujy; is related to U; as in (b) (respectively, (c)), then it follows
from [Mzk6], Theorem 2.4 (respectively, [Mzk8|, Theorem 1.3, (iii) [cf. also [Mzk§],
Theorem 2.3]), that one may construct [from Vj] a Vj;; related to V; as in (b)
(respectively, (c)). If Ujy is related to Uj as in (d), then Il , is obtained from
Iy, by forming the quotient of Iy, by the closed normal subgroup of Iy, generated
by some finite collection of elements of Ay, that belong to the decomposition groups
of points of U; in Ay,. Thus, by Lemma 2.11, (v), below, we conclude that the
quotient Iy, —» Ily,,, determines a quotient IIy, — IIy,_ , that corresponds to a
partial coarsification V; — Vji1, as desired. Finally, if U,, is a tripod, the existence
of the isomorphism Iy, = Iy, implies that V,, is also a tripod [cf. [Mzk5], Lemma
1.3.9]. This completes the proof of the claim.

Thus, to complete the proof of assertion (iv), it suffices to verify that V is
defined over a number field. But observe that since U is defined over a number
field, there exists a diagram of hyperbolic curves [i.e., in essence, a “Belyi map”]

Upn «— U, & — U — U

where the “hooked arrow <—” is an open immersion; the “non-hooked arrows”
are finite étale morphisms; and the finite étale morphism U’ — U is obtained by
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a base-change to a finite extension of the base field ky. Now the isomorphisms
Oy, = Iy, , Oy = Iy allow us to transform [cf. [Mzk8], Theorem 2.3 and its
proof] this diagram into a similar diagram

Vinh «— V! — V' — V

whose existence [since V;, is also a tripod!] shows that V' is also defined over a
number field, as desired. This completes the proof of assertion (iv). O

Remark 2.10.1. Note that the essential reason that the author is unable to prove
the stronger statement of Proposition 2.10, (iv), in the quasi-Belyi case is that, in
the notation of the proof of Proposition 2.10, (i), it is unclear how to construct [at
the level of arithmetic fundamental groups| the dominant morphism V-— W from
V. That is to say, unlike the situation involving the operations of Definition 2.9,
(ii), (a), (b), (c), (d), it is by no means clear how to construct, via purely group-
theoretic operations, the quotient of an arithmetic fundamental group arising from
an arbitrary dominant morphism.

Lemma 2.11. (Finite Subgroups of Fundamental Groups of Hyperbolic
Orbicurves) Let W be a hyperbolic orbicurve over an algebraically closed field
of characteristic zero; Xy a nonempty set of prime numbers. Denote the maximal
pro-Yw quotient of the étale fundamental group of W by Aw; suppose that
W admits a finite étale covering by a hyperbolic curve that arises from an open
subgroup of Ay . Let A C Aw (respectively, B C Ay ) be the decomposition
group [well-defined up to conjugation in Aw | of a closed point wa (respectively,
wp) of W; suppose that wa # wg. Then:

(i) A, B are cyclic.

(ii)) AN B = {1}. In particular, if A # {1}, then A is normally terminal in
Aw.

(iii) The order of every finite cyclic closed subgroup C' C Ay, divides the
order of W [cf. §0].

(iv) Every finite nontrivial closed subgroup C' C Ay is contained in a
decomposition group of a unique closed point of .

(v) The nontrivial decomposition groups of closed points of W may be charac-
terized as the maximal finite nontrivial closed subgroups of Ay .

Proof. Assertion (i) follows immediately from the well-known [and easily verified]
fact that the absolute Galois group of a complete discrete valuation field with
algebraically closed residue field of characteristic zero is cyclic.

Next, we consider assertion (ii). Let C' C A B be a subgroup of prime order
l € Yyw. Now consider a normal open subgroup H C Ay such that the covering
Wy — W determined by H is a hyperbolic curve. Note that this implies that
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ANH = B(\H = CNH = {1} [cf, e.g., assertion (iii), which will be proven
below without applying the present assertion (ii)]. Write Wy — We — W for the
covering determined by the open subgroup C'- H C Ayy. Observe that there exist
closed points w'y, wz of We that lift w4, wp, respectively, and whose decomposition
groups [well-defined up to conjugation in C' - H| are equal to C. Note that since
Wy is a hyperbolic curve, and C' is of prime order [, it follows that the order of
every closed point of W is equal to either 1 or [. Now if W is affine, then let v
be a cusp of We. If We is proper and admits > 3 points of order [, then let v be a
point of W of order [ such that v # w'y, wz. Note that if W is proper and admits
< 2 points of order [, then it follows from the hyperbolicity assumption that the
coarsification of W is a proper smooth curve of genus > 1; thus, by replacing H by
an appropriate open subgroup of H, one verifies immediately that one may assume
without loss of generality that either W is affine or W admits > 3 points of order
l. Now observe that W admits a finite étale cyclic covering W/, — We of degree (
which is étale over the compactification of the coarsification of W, except over the
points in the compactification of the coarsification of W¢ corresponding to v, w',
over which W[, is totally ramified. In particular, it follows that any point of W/,
lying over w'; (respectively, w) is of order [ (respectively, 1), thus contradicting
the observation that the decomposition groups |[well-defined up to conjugation in
C - H] of w'y, w’ are equal to C. This completes the proof that A(|B = {1}. By
applying this fact to arbitrary finite étale coverings of W, it follows formally [cf.
Proposition 2.6, (ii)] that A is normally terminal in Ay, whenever A # {1}.

Next, we consider assertion (iii). Denote the order of W by n. Now if C' C Ay,

is a nontrivial finite cyclic closed subgroup, then there exists a normal open subgroup

N C Ay such that C' ()N = {1}. In particular, it follows that if we take H LoN

[so H C Ay is an open subgroup|, then the natural map C — H?P is injective. On
the other hand, if we denote by Wy — W the covering determined by H, then it is
clear that the order of Wy divides n, hence that H?P is an extension of a torsion-
free profinite abelian group by a finite abelian group annihilated by n. Thus, we
conclude from the injection C' — H?P that the order of C divides n, as desired.
This completes the proof of assertion (iii).

Next, we consider assertion (iv). First, let us observe that uniqueness follows
formally from assertion (ii). Next, let us verify assertion (iv) under the further
assumption that C' is solvable. By induction on the order of ', we may assume
that [at least] one of the following conditions is satisfied: (a) C' is an extension of
a group of prime order by a nontrivial subgroup C; C C which is contained in the
decomposition group A; (b) C is of prime order [ € Xy . If (a) is satisfied, then by
replacing W by a finite étale covering of W determined by a suitable open subgroup
containing C', we may assume that (Cy; C) A C C. Thus, if A # C, then A = C is
normal in C. But this implies, by the normal terminality portion of assertion (ii),
that A = C, a contradiction. Thus, (a) implies that C' C A. If (b) is satisfied, then
we argue as follows: Observe that by assertion (iii), every open subgroup H C Ay,
that contains C' determines a finite étale covering Wy — W such that the order of
Wi is divisible by [. Write

Stackl(WH)

for the set of closed points of Wy whose order is divisible by . Now observe that
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since the order of Wy is divisible by the prime number [, it follows that Stack; (W)
is nonempty. Since the set Stack;(Wpy) is finite and nonempty, we thus conclude
that, if we allow H to vary [among open subgroups H C Ay, that contain C|], then
the inverse limit

lim Stack;(Wg)

H
is nonempty. But, unraveling the definitions, this means precisely that C' contains
the decomposition group D associated to some compatible system of points of the
sets Stack;(Wp). Since D is of order divisible by [, we thus conclude that D = C,
as desired. This completes the proof of assertion (iv) for C' solvable. On the other
hand, a well-known theorem from the theory of finite groups asserts that a finite
group in which every Sylow subgroup is cyclic is solvable [cf. [Scott], p. 356].
Thus, in light of assertion (i), we conclude that assertion (iv) for C' solvable implies
assertion (iv) for C' arbitrary.

Finally, we observe that assertion (v) follows formally from assertions (ii), (iv).

O

Remark 2.11.1. The author would like to thank A. Tamagawa for informing him
of Lemma 2.11 and, in particular, of the theorem on finite groups that was applied
in the proof of Lemma 2.11, (iv).

We are now ready to state the following “absolute p-adic version of the Grothen-
dieck Congecture” for hyperbolic curves of Belyi or quasi-Belyi type:

Corollary 2.12.  (Curves of Belyi or Quasi-Belyi Type) Let U (respectively,
V') be a hyperbolic curve over a nonarchimedean local field. Denote the base field
of U (respectively, V') by ky (respectively, ky ), the étale fundamental group of U
(respectively, V') by Iy (respectively, 11y ) [i.e., “we take ¥ = Primes”]. Suppose
further that at least one of the following conditions holds:

(a) both U and V are of quasi-Belyi type;
(b) either U or V' [but not necessarily both!] is of Belyi type.
Then any isomorphism of profinite groups
g1y = Iy
arises from a uniquely determined commutative diagram of schemes

~
—

S — X
< — <

R
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i which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale coverings determined by the profinite groups Iy, 11y .

Proof. In light of Proposition 2.10, (iii), (iv) [cf. also Remark 2.9.1], Corollary
2.12 follows formally from Corollary 2.8. ()

Remark 2.12.1. Note that in the proof of Proposition 2.10, Corollary 2.12, it
is necessary, in the quasi-Belyi case, to apply the full “Hom version” of [Mzk4],
Theorem A. This differs from the situation of [Mzk8], Corollaries 2.8, 3.2 — i.e.,
where one only treats hyperbolic curves of strictly Belyi type — or, indeed, of the
portion of Proposition 2.10, Corollary 2.12, that concerns curves of Bely: type,
in which the “isomorphism version” of [Mzk4], Theorem A, suffices [cf. [Mzk§],
Remark 2.8.1].

Thus, in the terminology of [Mzk6|, Definition 3.7, the portion of Corollary 2.12
concerning hyperbolic curves of Belyi type admits the following formal consequence:

Corollary 2.13. (Absoluteness of Curves of Belyi Type) FEvery hyperbolic
curve of Belyi type over a nonarchimedean local field is absolute.

Remark 2.13.1. It is interesting to note that the essential property that underlies
the absoluteness of Corollary 2.13 is the existence of a Belyi map [since the curve
is defined over a number field], which, in the context of the theory of [Mzk§],
§2, may be regarded as a sort of endomorphism of the curve. From this point of
view, Corollary 2.13 is reminiscent of [Mzk6|, Corollary 3.8, which states that the
“canonical curves” of p-adic Teichmiiller theory are absolute. Indeed, from the
point of view of the theory of [Mzk2], this canonicality may be regarded as the
existence of a sort of “Frobenius endomorphism” of the curve. It is also interesting
to note that both of these results assert that every member of some countable
collection of nonarchimedean hyperbolic curves is absolute.

Remark 2.13.2. In the context of Remark 2.13.1, it is interesting to note that,
unlike the canonical curves discussed in [Mzk6], §3, the set of points determined
by the hyperbolic curves of strictly Belyi type fails, for all pairs (g,r) such that
2g—24+1r>3,g9>1, to be Zariski dense in the moduli stack of hyperbolic curves
of type (g, 7). Indeed, this follows immediately from [Mzk1], Theorem B. On the
other hand, it is not clear to the author at the time of writing whether or not the set
of points determined by the hyperbolic curves of Belyi (respectively, quasi-Belyi)
type is Zariski dense in the moduli stack of hyperbolic curves of type (g, r) [when,
say, 29 — 2+ r > 3, g > 2|. Note, however, that when g = 0, 1, [one verifies easily
that] every hyperbolic curve of type (g,r) that is defined over a number field is
automatically of Belyi type.
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Section 3: Maximal Pro-l Cuspidalizations

In this §, we apply the theory of the weight filtration [cf. [Kane], [Mtm]],
together with various generalities concerning free Lie algebras [cf. the Appendix],
to construct, in the finite field case, “maximal cuspidally pro-l cuspidalizations”
[cf. Theorem 3.10], whose existence implies, under quite general conditions [cf.

Corollary 3.11 below]|, that an isomorphism “a” as in Theorem 1.16, (iii), is always
totally globally Green-compatible.

In the following discussion, we maintain the notation of §2, and assume further
throughout the present §3 that we are in the finite field case.

Definition 3.1. Let [ be a prime number; G, H, A topologically finitely generated
pro-l groups; ¢ : H — A a [continuous] homomorphism. Suppose further that A is
abelian, and that G is an [-adic Lie group [cf., e.g., [Serre], Chapter V, §7, §9, for
basic facts concerning l-adic Lie groups].

(i) We shall refer to as the ¢-central filtration on H the filtration defined as
follows:

def

HL) ' g

H(2) € Ker(¢)
H(m) def (the subgroup topologically generated by the commutators
[H(a), H(b)], where a +b=m, ¥ m > 3)

Thus, in words, this filtration on H is the “fastest decreasing central filtration among
those central filtrations whose top quotient factors through ¢”. We shall say that
H is ¢-nilpotent if H(m) = {1} for sufficiently large m. If H is ¢-nilpotent when ¢
is taken to be the natural surjection H — H?P to its abelianization H?P, then we
shall say that H is nilpotent. In the following, for a,b,n € Z such that 1 < a < b,
n > 1, we shall write

H(a/b) ' H(a)/H (D)

and def

Gr(H)(n) ¥ @ H(m/m+1)C Gr(H) ¥ Gr(H)(1)

Gr(H)(a/b) = Gr(H)(a)/Gr(H)(b)

and append a subscript Q; (respectively, [F;) to these objects to denote the result
of tensoring over Z; with Q; (respectively, F;). Thus, Gr(H), Grg,(H), Grr,(H)
are graded Lie algebras over Z;, Q, F;, respectively; Gr(H)(n) € Gr(H) is a [Lie
algebra-theoretic| ideal. Also, if Z > a > 1, then we shall write:

H(a/oo) & 1iTmH(a/b)

[where b ranges over the integers > a + 1].
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(ii) We shall denote by Lie(G) the Lie algebra over Q; determined by G. If
G is nilpotent, then Lie(G) is a nilpotent Lie algebra over Q;, hence determines
a connected, unipotent linear algebraic group Lin(G), which we shall refer to as
the linear algebraic group associated to G. In this situation, there exists [cf., e.g.,
Remark 3.3.2 below| a natural [continuous] homomorphism [with open imagel

G — Lin(G)(Q1)

[from G to the [-adic Lie group determined by the @Q-valued points of Lin(G)]
which is uniquely determined [since Lin(G) is connected and unipotent!] by the
condition that it induce the identity morphism on the associated Lie algebras. In
the situation of (i), if Z 5 a > 1, then we shall write:

Lie(H (a/00)) % l%nLie(H(a/b)); Lin(H(a/o0)) &' LiTmLin(H(a/b))

[where b ranges over the integers > a + 1; we recall that it is well-known [or easily
verified] that each H(a/b) is an [-adic Lie group].

Now let us fiz a prime number | € Xf. For § C X (k) a finite subset, let us
denote by
Ave — AY: Ax - AY

the maximal pro-l quotients and by
My, - 0 Ix — Y

the quotients of Iy, IIx by the kernels of Ay, — Ag)s, Ax —» Ag?. [Here, we
recall that Arr,, Iy, are as defined in Proposition 1.8, (ii), (iii).] Also, for x € X*¢!,

let us write ) )
DPWs) cay); IPUs] €AY,

for the images of D, [Us|, I,[Us] [notation as in Proposition 2.1], respectively, in
.
Us

Note that we have a natural surjection:
! ! Dya
AW A - (AP

The cup product on the group cohomology of Agl() determines an isomorphism [cf.
Proposition 1.3, (ii)]

Hom((AY)™, MY) = ()™
[where we write M)((l) o Mx ® Zy], hence a natural Gy -equivariant injection

M)(é) NN /\2 (Ag?)ab

whose image we denote by [c(lll)p.
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Definition 3.2. We shall refer to the central filtration
!
{Af(m)}

on Ag)s with respect to the natural surjection Ag)s — (Ag?)ab as the weight filtra-
tion on Ag)s cf., e.g., [Mtm], §3, p. 200].

Proposition 3.3. (Freeness and Centralizers) Let © € S. Write S, f
S\{x}; r for the cardinality of S, g for the genus of X. For x’ € S, let (,» be a

generator of IS,) [Us]. By abuse of notation, we shall also denote by (,+ the image
of G in Agl (2/3). Then:

(i) Gr(Ag)S) is a free Lie algebra over Z; [hence, in particular, is torsion-free
as a Zy-module] which is freely generated by 2g elements

a1,... 0, B1,... .0, € Agj”su/z)

together with the (. € Ag)s (2/3), for ' € S,. Alternatively, for an appropriate
choice of the elements (,, Gr(Agl) is the quotient of the free Lie algebra generated
by ou,...,0aq,0B1,...,08q, together with the ( € Ag)s(2/3), for ' € S, by the

single relation:
g
Y G+ Y fan B =0
z'eS n=1

At a more intrinsic level, this relation is a generator of the image of the natural
Gr-equivariant morphism

M — (P 10Wws) o 18,
xz'eS

[determined by the various natural isomorphisms M)((l) = Ig(ﬁl,) [Us], M)((l) - Ic(fl)p]],

whose codomain maps to Gr(A[(Jl)S) via the natural Gi-equivariant morphism

l l
(B Pws)) o 19, — Al @/3)
z’'esS

determined by the natural inclusions 19 Ug| — AW (2/3) and the bracket opera-
T Us
. Dya l
tion A2 (AQ)™> — Al (2/3)].

(i1) Let & be any of the elements o, ... ,aq,B1,...,08y; Cu, where 2’ € Sy,
of (i). Then the centralizer in Grg, (Agl) of [the image of] € [in GrQl(AgL)] is
equal to Q; - &. In particular, the Lie algebra Grg, (A%) is center-free.
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(iii) Let € be as in (ii). Then for m > 1, the centralizer in Ag)s(l/m—i— 2) of
the image o m 1/m + 2)/ is contained in the subgroup o 1/m +2
h f] € [in A d in the sub f Ay

generated by [the image of ] & and Ag)s (m/m + 2).

(iv) Let S, C S be a subset of S. Write
Newd C Gr(A)

for the sub-Lie algebra over Z; generated by the image of the restriction

(P rwsl) < (@ 10[Us]) — AGL(2/3)

/€S, x’' €S

to the direct summands indexed by elements of Si of the morphism of (i), and
Newy (a) € Gr(AL))(a) NNewl) ; Newl (a/b) < New}) (a)/Newl) (b) for a,b €
Z such that 1 < a <b. Then, in the notation of (i), Newgz is a free Lie algebra
over Z; generated by the elements (., for ' € S.. Moreover, the [“new” and

“co-new” | Z;-modules
Newy) (a/b);  Cuw§)(a/b) < Gr(AY) )(a/b)/Newl (a/b)

are free. In the following discussion, we shall write Newtor (l)( /b) = LN (SQ (a/b)®

Q/Z.

Proof. Assertion (i) (respectively, (ii)) is, in essence, the content of [Kane|, Propo-
sition 1 (respectively, Proposition A.1, (ii), (iii)). Assertion (iii) follows formally
from assertion (ii). Finally, we con81der assertion (iv). By Proposition A.1, (iii), it
follows that any free Lie algebra over F; with > 2 generators is center-free. Thus,
let M be the module determined by any faithful representation [e.g., when the car-
dinality of S, is > 2, the adjoint representation] of the free Lie algebra F over
F; in the formal generators (.., where 2/ € S,. Now observe that we obtain an

action of Gr]pl(A(l) ) on M’ LA @ M as follows: We let Qg,...0g; B2, ... By Car,

where 2/ € Sy def S\ S, act by multiplication by 0 on M’. We let oy, 1 act on
M’ = M & M via the matrices

0 (o 0 0
:L'IGS* ;
0 0 -1 0
respectively. Finally, we let (,/, where 2’ € S, act on M’ via the following matrix:
Car 0
0 —Cu

Thus, [by assertion (i)] M’ determines a representation of GrFl(A(l)) whose re-

striction to the image of New() ®z, Fi in Gr]Fl(A( )) determines [via the natural
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surjection F —» Newgz ®z, F1] a faithful representation of F. Thus, we conclude that

the natural surjection F — Newgz ®z, F; is an isomorphism, and that Newgz ®z, Fi

injects into Grp, (Ag)s) Assertion (iv) now follows formally. O

Remark 3.3.1. The author wishes to thank A. Tamagawa for pointing out to
him the content of Proposition 3.3, (i).

Remark 3.3.2. One way to verify the existence of the homomorphism “G —
Lin(G)(Qq)” of Definition 3.1, (ii), is to think of G as a quotient of a free pro-I
group of finite even rank F', whose associated “Grg,(—)” is a center-free free Lie
algebra [cf. Proposition 3.3, (i), (ii), in the case of r = 1], hence determines an
[infinite-dimensional, over Q] faithful [cf. Proposition 3.3, (iii)] unipotent represen-
tation [i.e., the adjoint representation — cf. the proof of Proposition 3.3, (iv)] of
F. More precisely, by Proposition 3.3, (iii), it follows that there exists a unipotent
linear representation pp : F — GL(V) on a finite-dimensional Q;-vector space V
such that Ker(pr) C Ker(F — G). But this implies that F' — G factors through
a quotient ' — () — G such that @ is nilpotent and admits an injective homo-
morphism of topological groups pg : Q@ — Qag(Q;) [induced by pr], where Qag
is a connected, unipotent algebraic group over QQ;, such that pg is a local isomor-
phism, and Ker(pg) C Ker(Q) - G). Thus, pg determines a structure of [-adic Lie
group on  such that the morphism Lie(pg) induced by pg on Lie algebras is an
1isomorphism. Moreover, the morphism induced by ) — G on Lie algebras factors
through Lie(pg), thus determining a homomorphism of [connected, unipotent| al-
gebraic groups Q. — Lin(G) such that the resulting composite homomorphism
Q — Qae(Q) — Lin(G)(Qy) factors [cf. the induced morphisms on Lie algebras,
together with the fact that Lin(G)(Q;) has no torsion!] though G, thus yielding a
homomorphism G — Lin(G)(Q;), as desired.

Next, let us fixr an x, € S, as well as a choice of decomposition group
D, [Us] C Iy
[i.e., among the various IIj,-conjugates of this subgroup] associated to z.. [Thus,

D, [Ug] determines a specific subgroup [i.e., not just a conjugacy class of subgroups|
DY [Us] C Hgl] Recall that the natural exact sequences

1 — I,,,[Us] = Do, [Us] = G — 1; 1 —IV[Us] - DV [Us] — Gi — 1

split. [Indeed, extracting roots of any local uniformizer of X at x, determines such a
splitting — cf., e.g., the discussion at the beginning of [Mzk8|, §4.] In the following
discussion, we shall fiz a splitting
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of this exact sequence. Thus, this splitting determines a natural action of G}, [by
conjugation]| on Ag)s, hence also on

Linf)) (a/b) = Lin(A) (a/0))(Q);  Liep), (a/8) < Lie(Af), (a/0))

!
Gro, (A{7))(a/b)
[where a,b € Z; 1 < a < b]. Write
Fi, € Gy,

for the Frobenius element of G. In the following, we shall denote the cardinality
of k by qx.

Proposition 3.4. (Galois Invariant Splitting) Let a,b € Z, 1 < a < b.

1) The eigenvalues of the action of Fy on Lie'” (a/a+1) are algebraic num-
Us

bers all of whose complex absolute values are equal to qZ/Q [i.e., “of weight a”].

(ii) There is a unique Gp-equivariant isomorphism of Lie algebras
Lie!” (a/b) = Grg, (AL )(a/b
ie!) (a/6) = Gro, (A1 )(a/b)

which induces the identity isomorphism Lieg?s (c/c+1) = Grg, (Ag)s)(c/c +1), for
all c € 7 such that a <c<b-—1.

(i1i) The isomorphism of (ii) together with the natural inclusions Y [Us] —
Ag)s for x € S [which are well-defined up to Agl—conjugation] determine a G-
equivariant morphism

(P 1OWws] e @) @ Liel) (1/2) — Lie) (1/ox)
z€S

which ezhibits, in a Gy-equivariant fashion, Lieg)s(l/oo) as the quotient of the
completion [with respect to the filtration topology] of the free Lie algebra generated
by the finite dimensional Q;-vector space

(D 101Us) @ @) @ Lief). (1/2)

€S

[equipped with o natural grading, hence also a filtration, by taking the e [Us|®
Q; to be of weight 2, Liegi(l/Q) to be of weight 1], by the single relation deter-
mined by the image of the morphism

MY e — (@ MUsloQ) & (I, o Q)
zeS
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of Proposition 3.3, (i), tensored with Q.

(iv) For each g € Ling)s(l/oo), there erists a unique h € Ling;(l/oo) such
that
Fj, oInng, = Inny, o Fj, o Inny,—1

[where “Inn” denotes the inner automorphism of Ling)s(l/oo) defined by conjuga-

tion by the subscripted element]. Moreover, when g lies in the image of Lg*) ® Qq
[which is stabilized by the action of Fy/, h also lies in the image of L,(cl*) ® Q.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis for abelian
varieties over finite fields” — cf., e.g., [Mumf], p. 206. Assertion (ii) (respec-
tively, (iii); (iv)) follows formally from assertion (i) (respectively, and Proposition
3.3, (i); and successive approximation of h with respect to the natural filtration

Ling, (a/0) € Ling (1/0c)). O

Next, let
S, CS

be a subset such that x, € S,; Sp et S\Ss. In the following, we shall regard

Ling)s (a/b) as being equipped with its natural l-adic topology. Thus, Gy acts con-

tinuously on Ling)s (a/b), Lieg)s (a/b), and we have natural Gy-equivariant surjec-
tions:
. (1 . (1 . (1 . (1
Ling) (a/b) = Ling) (a/b); Lie(}) (a/b) - Liey;). (a/b)

Let us write

. (1 .
ngf)s/UsO (a/b); Llngl/Uso (a/b)

for the kernels of these surjections. In the following, to simplify the notation, we
shall often omit the superscript (1) from the objects “Lin(l)”, “Lie(l)”, “New(l)”,
“New™™ ()" introduced above and write:

Ling,(a/b);  Lieyg(a/b); Linyg (a/b); Lieyg, (a/b)
Ling, e, (a/b);  Lieyg ug, (a/b);  Newg (a/b); Newg'(a/b)

Also, we shall write:

def

o def
X News, (a/b) @Q; A}

Newg* (a/b) = LIHUS(l/OO) XLinUSO(l/OO) AUSO

Note that, for Z > b > 1, we have a natural G -equivariant inclusion

Ling, ju, (b +1/00) = Lingg g, (b +1/00) x (13 {1} = Ling,(1/00) XLing, (1/00) AUs,
= Ay

whose image forms a normal subgroup of Ang; write

Lie Lie<b
AUS - AUS
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for the quotient of Alﬁlse by this normal subgroup. Also, we have a natural G-
equivariant [composite] inclusion

Newg* (b+1/b+2) — Lieygus, (b+1/b+2) = Ling, g, (0+1/b+2) — Abisgbﬂ

. Lie<b+1 .
whose image forms a normal subgroup of AUISQ— 1. write

Lie<b+1 Lie<b+
AUS —» AUS

for the quotient of AI[}iSeSbH by this normal subgroup. Thus, we have natural G-
equivariant homomorphisms of topological groups:

Lie Lie<b+ Lie<b
AUS - AUS - AUS - AUS - AUSO

[the last three of which are easily verified to be surjective]. Moreover, forming the
semi-direct product with Gy, [via the natural actions of G| yields topological groups
and homomorphisms as follows:

Lie Lie<b+ Lie<b
HUS - HUS - HUS - HUS - HUSO
Also, we note that we have natural exact sequences:
: Lie
1 — Lingg/ug, (1/00) — ApS — Ay — 1

1 — Lingjug, (1/00) — 15 — Hyg, — 1

Definition 3.5.

(i) We shall refer to A7 (respectively, TT5; Abisegb; Hg;gb; AESGSH; HE;SH)
as the [l-adic] Lie-ification (respectively, Lie-ification; Lie-ification, truncated to
order b; Lie-ification, truncated to order b; Lie-ification, truncated to order b+; Lie-
ification, truncated to order b+) of Ay, (respectively, Iy ; Avy; Hugs Avg; Huyg)
[over Ay, (respectively, Ily, 5 Avg,; Hug s Avs, s Hug, )]

(ii) Observe that it follows immediately from the definitions that, for Z 3 b > 1,
we have natural exact sequences

1 — Newd (b+1/b+2) — Apesttl  Aplestr

1— Newg* (b + 1/b + 2) N HI&iSGSb—H . H]&i:§5+ 1

on which HI&isng acts naturally by conjugation. [Here, we note in passing that it
is immediate from the definitions that the submodule

Newg (b+1/b+2) C Newg (b+ 1/b+ 2)
is contained in the image of Ay,.] In particular, we obtain a natural inclusion:

Newg (b+1/b+2) — Alﬁi;gb—&-l (c Hbisegbﬂ)
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We shall refer to the quotients of AII}ieSbH, HII}ieSbH by the image of this natural
S S

. : o < <
inclusion as the toral Lie-ifications Ag’;*bﬂ, Hg)sr*bﬂ of Ayg, My, [over Ay,

HUSO]. Thus, we have natural exact sequences

1 — Newl" (b+1/b+2) — A=ttt — Apestt

1 — Newtor b—l— 1 b+ 9 Htor§b+1 N HLie§b+ 1
Us Us

on which HI[}iSeSbH acts naturally by conjugation.

(iii) Suppose that U . Us, is a connected finite étale covering that arises
from an open subgroup HU/ C Iy, ; write X " — X for the normalization of X in

. Then we shall say that the [ramified] covering X' — X is (S, Sy, X)-admissible

1f every closed point of X’ that lies over a point of S is rational over the base field

k" of X', and, moreover, Iy is a characteristic subgroup of Iy, .
S 0

Remark 3.5.1. Note that it follows immediately from the definition of H{jl; [cf.
also Proposition 3.4, (iii)] that we obtain a natural subgroup

D;I;le def (I(l)[Us] ® @) x Gy C HLle

which contains the image of the decomposition group D, [Us] C Iy, via the
natural homomorphism Iy; — I, Let us write, for Z 3 b > 1, D}°<P C HLle<b

for the image of DY in HI[}ISSb, Ie def DYie ﬂALle [hiesb = def DLle<bﬂALle<b.
[Also, we shall use similar notation when “b” is replaced by “b+".

Proposition 3.6. (Center-freeness of Lie-ification) A%ls? is center-free.

Proof.  Since Ay, is center-free [cf. Proposition 1.8, (iii)], and the natural
morphism Alﬁf — Ay, is surjective, it suffices to verify that the centralizer in
Ling (1/00) of the image of Ap is trivial. But the image of Ap'¢ in Liny (1/00)
contains the image of Ay, in Ling,(1/00). In particular, it follows that the cen-
tralizer in question lies in the center of Liny,(1/00). Thus, Proposition 3.6 follows
from Proposition 3.3, (ii) [or, alternatively, (iii)]. O

Remark 3.6.1. Observe that changing the choice of splitting
Gk‘ - Dac* [US]

affects the image of the element Fj € GG, via the composite of the inclusion Gy, —
[Ty, with the morphisms

L1e Lie<b, Lie<b+
H — H HUS — HUS 5 HUS — HUS
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by conjugation by an element h € [gg*ie, which, up to a denominator dividing ¢ — 1,
lies in the image of I, [Us] C Ay, — cf. Proposition 3.4, (iv); Proposition 3.6. In
particular, it follows that changing the choice of splittings Gy — D, [Us] affects
the Galois invariant splittings of Proposition 3.4, (ii), by conjugation by h. Put
another way, if we identify the “Lingy,(1/00)”, “Linyg, (1/00)” portions of AGe
[cf. the definition of A%‘;] with the [l-adic points of the pro-unipotent algebraic
groups determined by the] corresponding graded Lie objects “Grg,(—)(1/00)” via
the Galois invariant splittings of Proposition 3.4, (ii), then it follows that: Changing
the choice of splitting Gy, — D, [Us| affects the images of the morphisms

Lie. Lie<b. Lie<b+
HUS - HUs’ HUS - HUS ? HUS - HUS

[where Z 5 b > 1] by conjugation by h.

In light of Proposition 3.6, we may apply the exact sequence “1 — (=) —
Aut(—) — Out(—) — 17 [cf. §0] to construct the following topological group:

ALIE def ;@1 Aut(AFE ) X ouy(ats ) Gal(X7/Xp)
/ S/

[where X’ — X ranges over the (5, So, X)-admissible coverings of X; Uy, C X' is
the open subscheme determined by the complement of the set S’ of closed points
of X’ that lie over points of S|. Note that Gy, acts naturally on Ang; thus, we may
form the semi-direct product of AI,jISE with G to obtain a topological group H%ISE

Also, since the various AUé/ [where U ; C X' is the open subscheme determined by

0
the complement of the set S|, of closed points of X’ that lie over points of Sy] arising
from the X’ — X that appear in this inverse limit are center-free [cf. Proposition
1.8, (iii)], the natural isomorphism

l%l AUt(AUéé) XOut(Ay, ) Gal(X7/X5) = Aus,
0

determines surjections AI(jISE —» AUSO, ngE — Iy, -

Next, let us observe that, for Z > b > 1, the various quotients AIU‘i,e —»
S/

tor<b+1 Lie<b+ Lie<b : , » LIE
AU,/ —» AU,/ —» AU,/ determine quotients of topological groups Ap* —

S S S
< < < < < <
AEORJ}H . AI&IEJJr . AII}IEJ’ e H50R7b+1 . H%JIEJH— . HBIEJ)_
S . S i S S i S S
Thus, we obtain natural homomorphisms of topological groups:

Ay

LIE TOR<b+1 LIE<b+ LIE<b
Iy, — HUS —» HUS —» HUS —» HUS —» HUSO

LIE TOR<b+1 LIE<b+ LIE<b
s AUs - AUS - AUS - AUS - AUSO

We shall denote by

<b+ LIE<b4 <b+ LIE<b+ <b LIE<b. <b LIE<b
AUs < AUs ’ HUS < HUS AUs < AUs HUS < HUS

Y ?
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the respective images of Ay, Il via these natural homomorphisms. Thus, one

. < < . . .
may think of Afj;’, Hgs as being a sort of “canonical integral structure” on the
. o o . < <
“inverse limit truncated Lie-ifications” AgISE—b, HEISE—Z’.

Here, we note in passing, relative to the theory of §1, 2, that [it is immediate
from the definitions that] when S = S, [so Ug, = X|, the quotient I, — H%ﬁ is
the maximal cuspidally pro-l abelian quotient of Iy, [cf. Proposition 1.14, (i)].

Next, let us observe that in the inverse limit used to define A%ISE, H%ISE, the
various “Ig;je”, “Dlggie” [cf. Remark 3.5.1] form a compatible system, hence give rise
to subgroups

LIE LIE LIE, LIE<b LIE<b LIE<b
Ix* g Dw* g HUS ) Iw* g Dx* g HUS

together with natural exact sequences and isomorphisms [when b > 2]
1—>I£3E—>DI;£E—>G;€—>1
1 — JUESh _, pLIBSb G

LIP = [P = 10[Us] © Q

[and similarly when “b” is replaced by “b+7"]. Also, the images of the subgroups
1. |Us], D, |Us] of Iy, determine subgroups

<b <b <b
15> € Dy’ C Iy,

[and similarly when “b” is replaced by “b+"].

In the following, let us write [cf. Proposition 3.3, (iv)]

Cnwg (a/b) def angz (a/b); an(g* (a/b) def angz (a/b) ® Q

[where a,b € Z, 1 < a < b.
Before proceeding, let us observe that [it is immediate from the definitions
that] the natural surjections

LIE<1+ LIE<L1 A LIE<1+ LIE<L1
AUS —» AUS —» AUSO, II — 11 — Iy

US US SO

are tsomorphisms. On the other hand, for b > 2, we have the following result:

Proposition 3.7. (Plus Liftings of Canonical Integral Structures) For
7Z.35b>2:

: — <b+ <b  r<b+ <b : ;
(i) The natural surjections A" — Ag., Ui " — Il are isomorphisms.

(ii) Any two liftings of the natural inclusion HES — HI,}ISESI’ to inclusions

Hgb . HIFJISESIH— differ by conjugation in HglsESH by a unique element of the
kernel of HBISESH . HI&ISEgb'
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(iii) Any two liftings of the natural inclusion HE;’ — HII}ISESb to inclusions

<b LIE<b . . : ..
15" < PSP whose images contain D= in fact coincide.
Us Us T

Proof. First, we consider assertion (i). It follows immediately from the definitions
that the kernel in question

Ker(AggJr —» Agg) = Ker( §g+ —» Hg:)

is contained in [and, in fact, equal to] the inverse limit

X/

[where X' — X ranges over the (S, Sy, X)-admissible coverings of X; S, (respec-

tively, S”) is the set of closed points of X’ that lie over points of S, (respectively,

S)]. On the other hand, it follows from the definition of “Cnwg, (b + 1/b + 2)”

that Cnwg, (b + 1/b + 2) is generated by certain successive brackets of the var-

ious generators of the Lie algebra Gr(Agz ) [cf. Proposition 3.3, (i)] with the
S/

property that at least one of the generators appearing in the successive bracket is
[in the notation of Proposition 3.3, (i)] either one of the [analogue for X’ of the]

“ai,...,ag,b1,...,03," or one of the “C,”, where 2/ € S ot S’\S.. Moreover,
since, by taking HUg” C HUé, to be sufficiently small, one may arrange that the im-
0

0

age of Ag), (1/3) in Ag? (1/3) be contained in an arbitrarily small open subgroup

sy s{

of AS? (1/3), it thus follows that the above inverse limit vanishes. This completes
S/

0
the proof of assertion (i).

Next, let us observe that to prove assertion (ii), it suffices — in light of the
natural isomorphism

Ker(HIfJISESbJr — H[L]ISESb) = lim Cow?, (b+1/b+2)
X/ ’

[where X', S. are as above] — to show that
H'(II5?, Cowg, (b+1/b+2)) =0

for i = 0,1, each S/, as above. Since the action of Agg on ang, (b+1/b+ 2)
clearly factors through a finite quotient of AEZ — Ayg, , it thus suffices to observe
[by considering the Leray spectral sequence associated to the surjection HE? — G
that the action of Fj on ang, (b+1/b+2) is “of weight b+1 > 37, while the action
of Fj on (Ag?s/)ab is “of weight < 27 [cf. Proposition 3.4, (i)]. This completes the

proof of assertion (ii).

Finally, we consider assertion (iii). First, let us observe that any two liftings of
HI[}ISESb to inclusions Hég — HII}ISESH

. . <b .
the natural inclusion Il — whose images
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contain D= = D=P [since b > 2] in fact coincide on DS C Hég. Thus, by
assertion (ii), it suffices to verify that the submodule of Fy-invariants of

LIE<b+ LIE<b
Ker (I, — M "=7)
is zero. But in light of the natural isomorphism

Ker(IFE<P —» ) 5 i G, -+ 175 +2)

[where X', S’ are as above], this follows from Proposition 3.4, (i). This completes
the proof of assertion (iii). O

Next, for Z > b > 1, let us denote by

< < < <
A_b++ C ATOR_b—Fl. H_b++ C HTOR_b—I—l
Us Us Us Us

Y

the respective images of Ay, Iy, via the natural homomorphisms considered
above and by
<b++ <b4++ <bt+
1577 € Dy C g

the images of the subgroups I, [Us], D, [Us] of IIy7,. Observe that it follows from
the definition of AESRSHI, HESRSI’H [cf. also Proposition 3.3, (iv)] that the
natural surjections A§2++ —» A%?r, H§2++ —» HE?’ are, in fact, isomorphisms.
Thus, by Proposition 3.7, (i), we obtain a commutative diagram of natural homo-
morphisms

<b+1 <b++ ~ <b+ ~ <b
HUs _» HUS - HUS - HUS

| J | |

< < < <
HLIE_b+1 s HTOR_b+1 s HLIE_b+ s HLIE_b
Us Us Us Us

[where the vertical arrows are the natural inclusions; all of the horizontal arrows are
surjections; the second two upper horizontal arrows are isomorphisms|. Moreover,
it follows immediately from the definitions that the first square in this commuta-

. . . . . < <

tive diagram is cartesian. That is to say, the subgroup Hﬁbﬂ - HlalE—bH may be
S

LIE<b+1 HgORng

thought of as the inverse image via the natural surjection Iy

S
of the image of a certain lifting of the natural inclusion HEZ — HI&ISESH [cf. Propo-
sition 3.7, (i)] to an inclusion Héz — HgSRng. Also, let us write:

def
H%ﬁ csp| = Ker(H%IS’ — Ix)
M, fesp] = Ker(Il5™ — Tx)

for the cuspidal subgroups of HLS,;’, H§s++.
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Next, following the pattern of §1, we relate the constructions made so far to
the fundamental groups Ay, , Hy,,  [cf. the discussion preceding Proposition
1.6]. For simplicity, we assume from now on that:

S =85, ={x.}

[so Sop = (0]. Write D,,, [X] C IIx for the image of D, [Us] via the natural surjection
II;7, — IIx. Then the projection Iy, . — Ilx to the second factor determines a

natural isomorphism
HUS - HUXXX XTIx Dw*[X]

[cf. Proposition 1.8, (ii)]. Moreover, this isomorphism determines a natural iso-
morphism

(HUS 2) Dm* [US] = Dx XTI x Dﬂﬁ*[X] (g Dx C HUXXX)

[where “Dx” is as in the discussion preceding Proposition 1.12] which is compat-

ible with the natural inclusions D, [Us] — Ily,, Dx — Iy, . Put another
way, D, [Us| [hence also I, [Us|, Gr € D, [Ug]] may be thought of as being “si-
multaneously” a subgroup of both Iy, and Dx. Thus, we obtain a natural exact
sequence

1 — Ay, — Iy, — IIx — 1

together with compatible inclusions
AUS 2 AUé/ 2 Ia:*[US] g Dx*[US] QDX g HUXXX

[where X' — X is an (5,0, X)-admissible covering of X; U C X' is the open
subscheme determined by the complement of the set S’ of closed points of X’ that
lie over z,|. Also, we shall write:

A def
Dx = Dx ﬂAUXXX C Hyyyx

In particular, we obtain natural actions [by conjugation] of Dx on Ay, AU/S, [as
well as on the various objects naturally constructed from Ay, AUé/ in the above
discussion], which we shall refer to as diagonal actions.

Proposition 3.8. (Characterization of the Diagonal Action) Suppose that
S =8, ={x.}. Then in the notation and terminology of the above discussion, the
diagonal action of Dx on Liny; (1/00) is completely determined fi.e., as a
continuous action of the topological group Dx on the topological group Ling:, (1/00)]
by the following conditions:

(a) the action is compatible with the natural action of D, [Us| C Dx on
LinUé, (]‘/OO)?

(b) the action is compatible with the filtration {LinU/S/ (a/o0)} [where a > 1
is an integer| on Liny, (1/00).
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(c) the action coincides with the diagonal action of Dx on the quotient
LinU/S,(l/él) [cf. condition (b)] of LinUé/(l/oo).

Proof. First, I claim that it suffices to show that these conditions determine the

L DR xay Axs € DR € Dx on Ling, (1/00).

Indeed, once the action of D%, /X is determined, it follows that the action of

action of the subgroup D%, /X

def
Dxiyx = Dx xuy lx: € Dy [Us]- D%/ x € Dx

is determined [cf. condition (a)]. On the other hand, since Ilx- is an open normal
subgroup of IIx, it follows that Dx/,x is an open normal subgroup of Dx. Thus, by
considering the conjugation actions of Dx on Dx//x and of Im(Dx) C Liny, (1/00)
onIm(Dx//x) C Liny, (1/00) [i-e., of the group of automorphisms of Liny, (1/00)
induced by elements of Dx on the group of automorphisms of Liny, (1/00) induced
by elements of D x], we conclude that the action of Dx on LinU/S/(l/oo) is de-
termined up to composition with automorphisms of LinU/S/(l /oo) that commute

with the action of Dx/,x and [cf. condition (c)] induce the identity on the quo-
tient Ling, (1 /4). Now let a be an automorphism of Liny,, (1/00) that commutes

with the action of Dx/,x and induces the identity on the quotient LinU/S,(l /4).

Then o commutes with some open subgroup of G C D, [Ug] C Dx, so a induces
an automorphism of LieU/S, (1/00) that is compatible with the splittings of Propo-

sition 3.4, (ii). Since Gr(Aga ) is generated by its elements “of weight < 27 [cf.
S/
Proposition 3.3, (i)], we thus conclude that « induces the identity automorphism

of LieU/S, (1/00), hence that « itself is the identity automorphism. This completes
the proof of the claim.

Next, let us observe that by condition (c¢) [cf. also Proposition 3.3, (i)], the
action of D%, /x on Ling (1/00) is unipotent, relative to the filtration of condition

(b). Thus, it follows [from the definition of “Lie(—)”] that the induced action of
D)A(,/X on Liey, (1/00) determines an action of the Lie algebra

Lie(D%/)y) & Lie((D%)x)®(1/o0))

[where we write (D)A(,/X)(l) for the maximal pro-I quotient of (D)A(,/X)(l)] on the Lie
algebra LieUé, (1/00). Moreover, to complete the proof of Proposition 3.8, it suffices
to show that this Lie algebra action is the action arising from the diagonal action. In
fact, since this Lie algebra action is compatible [cf. condition (a)] with the actions of
G on Lie(D)A(,/X), LieU/S/ (1/00), it follows, by considering the induced eigenspace

splittings [cf. Proposition 3.4, (ii)], that [to complete the proof of Proposition 3.§]

oot Gr(Lie(Dﬁ‘(,/X)) on

Gr(Al(JQ ) is the action arising from the diagonal action. On the other hand, since
S/

it suffices to show that the Lie algebra action of Gr(D)A(,/X)

Gr(Dj‘(,/X), Gr(AgZ/) are generated by elements “of weight < 2” [cf. Proposition
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3.3, (i)], this follows by observing that the Lie algebra action of the unique generator
of Gr(D%,/X) “of weight 2” [which arises from I, [Ug] C D%,/X] is determined by

condition (a), while the Lie algebra action of the generators of Gr(D%, /x) “of weight

17 [which send elements of Gr(Agjl ) “of weight < 2”7 to elements of Gr(Agl ) “of
S’ s/
weight < 3”] is determined by condition (c). This completes the proof of Proposition

38. O

Remark 3.8.1. Note that the conditions of Proposition 3.8 allow one to char-
acterize not only the diagonal action of Dx on LinUé,(l/oo), but also on AFF
S/

Hgl,e , hence also on AI[}ISE, HI[jISE [where we note that the diagonal action of Dy on

Gal(X '/ X7) is simply the conjugation action arising from the quotients Dx —» Ilx,
Ax — Gal(Xé/XE)].

Remark 3.8.2. Note that the groups Liny, (1/4) of condition (c) of Proposition
3.8 are, as groups equipped with the surjection LinUé/ (1/4) — Linx/(1/4), cuspi-
dally abelian [i.e., the kernel of this surjection is abelian|, hence may be constructed

from the mazimal cuspidally abelian quotients Iy, . — H%J;b . of Theorem 1.16.

Proposition 3.9. (Extensions of Canonical Integral Structures) Suppose
that S = S, = {x.} [c¢f. Remark 3.9.2 below]. Let b > 1 be an integer. Then:

(i) Suppose that b = 1. Then any two liftings of the natural inclusion H§2 —

< . . < < . . . . <
HLIE—b+ to inclusions H—z — HTSR b+l differ by conjugation in HESR—I’H by

an element of the kernel of HTOR<”+1 HTI}IESH'
S

(ii) Suppose that b > 2. Then any two liftings of the natural inclusion H§2 —

< , , < < . . .
HLIE " to inclusions 115 b, HTOR b1 whose 1mages contain I<b++ differ by

Conjugatlon in HTOR<b+1 by an element of the kernel of HTOPKbJrl HI(}ISESZ’JF,

(iii) Let 8 be an automorphism of the profinite group H<bJrl that satisfies the
following two conditions: (a) B preserves and induces the zdentz’ty on the quo-
tient H<b+1 —» <b' (b) B preserves the subgroup I=PT1 C H§2+1. Then [ is a

B 5
Ker(Il7 ;" — g, )-1nner automorphism.

(iv) Let § € Ker(HTOR<b+1 — HEISESH) be an element that is invariant
under the diagonal action of Dx. Then if b = 1, then § lies in the image of
I, [Us] @ (Qi/Zy); if b > 2, then § is the identity element

(v) Write

o0 def
Iy, — 15 l_ 5% Ay —

S S

B
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for the the quotients of Iy, Ay, defined by the inverse limit of the H<b A<b and

<oco <oo
HUXxX - HUX x? AUXxx - AUXXX

for the quotients of 7, Avuy, x determined by the kernel in Ayg C Ay, C
Oy, [cf the discussion preceding Proposition 3.8] of Ker(Ayg — ASOO). Then
My, — H— (respectively, Ayy — A<O° Oy, — 5;0)(; Apyg,x — AUXX)()
s the max1mal cuspidally pro-l quotlent of Uy (respectively, Avy; Myy,

Ay, ); moreover, (HE?)T, AESOO, (Hg;oxx)T, Al%ioxx [where the daggers denote

the result of applying the operation “x¢, GZ "] are slim.

Proof.  First, we consider assertions (i), (ii). Observe that, for Z > b > 1, the
difference of any two liftings of the natural inclusion Hg: — HI(}ZESH to inclusions

Hég — HggRng determines a compatible collection of cohomology classes
s € H'(II5", Newr (b +1/b + 2))

[where X’ — X ranges over the (S, 0, X)-admissible coverings of X; S’ is the set of
closed points of X’ that lie over z,]. Since News' (b + 1/b+ 2) = 0 whenever b is
even, we may assume for the remainder of the proof of assertions (i), (ii) that b is
odd.

Next, let us observe that by Proposition 3.4, (i), the zeroth cohomology module
<b tor
H° (ITg., Newg (b +1/b + 2))

is finite. This finiteness implies that any [not necessarily compatible!] system of
sections of a compatible system of torsors over H O(HU , New'S" (b+1/b+2)) always
admits a compatible cofinal subsystem. In light of the natural isomorphism

Ker (IT;; 7= o TPty 5 lim Newg"(b+1/b+2))

[where X', S” are as described above|, we thus conclude that in order to show
that the two inclusions Hég — H?}SRQ’H differ by conjugation by an element of

Ker(HTORSbJrl —» HLISESH), it suffices to show that the ng = 0.

Note that H [Csp] acts trivially on New'' (b4 1/b+2)). Now I claim that:

Each ng: arises from a unique class [which, by abuse of notation, we shall
also denote by ns:] in H (Il x, News" (b + 1/b+ 2)).

Indeed, if b = 1, this claim follows from the fact that ng [esp] = {1} [cf. the discus-
sion preceding Proposition 3.7], so assume that b > 2, and that we are in the situa-
tion of assertion (ii). Now observe that since S = S, is of cardinality one, it follows
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that H[S];) [csp| (respectively, H%?Jr[csp]) is topologically generated by the Hgg— (re-
spectively, H§2++-) conjugates of I= (respectively, I="T+). Note, moreover, that it

is immediate from the definitions that every element of Ker(l’[gSRSbJrl e HgISESbJr)

commutes with ISPTF. In particular, it follows that the images of Hég [csp] via the

. . < TOR<b+1 . . . o .
two inclusions H[—jg — HUSR—H under consideration necessarily coincide. But this
tor

implies that each ng/ arises from a unique class in H'(ITx, New&' (b + 1/b + 2)),
thus completing the proof of the claim.

Next, [returning to the general situation involving both assertions (i) and (ii)]
let
X// N X/

be a morphism of (S, (), ¥2)-admissible coverings of X. Write UZ,, C X" for the open
subscheme determined by the complement of the set S” of closed points of X’ that
lie over points of S. Also, let us assume that the open subgroup Ax» C Ax: arises

from some open subgroup H" C A3, that is preserved by the action of Ily. Thus, it

follows that the covering X© — Xr is abelian; write Gal(X"/X") et Gal(X{/X7).

For ¢ a positive integer, set:
R 2; RIS Zife- Gal(X"/X')] € R" < Z[Gal(X"/X")]

[where we write ¢-Gal(X"”/X") C Gal(X"/X") for the subgroup of the abelian group
Gal(X"”/X") that arises as the image of multiplication by c|. Thus, R" (respectively,
R”; R!) is a commutative ring with unity whose underlying R’- (respectively, R/-;
R’-) module is finite and free; moreover, R”, R admit a natural IT x-action [induced
by the conjugation action of ITx on the subquotient Gal(X”/X") of ITx]. Also, we
shall denote by

e/:R! »R; € :R'"-> R

the augmentations obtained by mapping all of the elements of Gal(X"”/X") to 1.

Next, let us observe that S’, S” admit natural I1x-actions with respect to
which we have natural isomorphisms of Il x -modules [cf. Proposition 3.3, (i), (iv)]

Newg, (2/3) = R'[S"| @ MY;  Newg,(2/3) > R'[S"] @ MY
which determine natural isomorphisms of 1l x-modules
Newg: (2¢/2¢ + 1) = LieS, (R[S @ M)
New g (2¢/2¢ + 1) & Lie (R'[S"] @ M)

[cf. the notation of Proposition A.1] for integers ¢ > 1. In the following, we shall
1dentify the domains and codomains of these isomorphisms via these isomorphisms.

Next, let us observe that the R’-module R'[S”] admits a natural R”-module
structure that is compatible with the IIx-action on R”, R'[S”]. Note, moreover,
that R'[S”] is a free R"”-module, and that we have a natural isomorphism

R/[S”] ®R”,e” R/ :} R/[S/]
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induced by the augmentation ¢’ : R” — R’. Also, we observe that any choice of rep-
resentatives in S” of the Ax:/Ax» = Gal(X”/X')-orbits of S” [where we note that
the set of such orbits may be naturally identified with S’] determines an R”-basis
of R'[S"”], hence [by considering “Hall bases” — cf., e.g., [Bour|, Chapter II, §2.11]
an R"-basis of LieR, (R'[S"]). Note that since the natural action of Gal(X"”/X")
on Lief, (R'[S”]) is compatible with the Lie algebra structure, it follows that:

This natural action of Gal(X"” /X') on LieR, (R'[S”]) is given by composing
the R”-module structure action Gal(X"”/X’) < R with the morphism
¢ Gal(X"/X'") — Gal(X"/X'") given by multiplication by c.

In particular, this natural action of Gal(X"”/X") on Lie%. (R'[S”]) factors through
the quotient Gal(X"”/X') — ¢-Gal(X"”/X') and hence determines on L£ieg. (R'[S"])
a structure of “induced” c-Gal(X"” /X')-module [in the terminology of the cohomol-
ogy theory of finite groups|. Thus, we obtain natural, Il x -equivariant isomorphisms

R/[Sl] ~ R/[S//]@(X”/X’)
Liet (R'[S")) @py.cn R = Liely, (R[S"))S2X /X)) = giet, (RI[S"])e GallX"/X")

[where we use superscripts to denote the submodules of invariants with respect to
the action of the superscripted group]. Moreover, we observe that relative to these
natural isomorphisms, the restriction of the natural surjection Lie%, (R'[S”]) —
Liehn (R'[S"]) ®rr er R’ to the submodule of Gal(X"”/X')-invariants induces the
endomorphism of the module Liex, (R'[S"]) @ry o R given by multiplication by
the order of c- Gal(X"/X').

Now let us write:

L gies, (RS @ M) & (Qi/Z)

Newfgo,f/s,(2c/2c +1) et Newfgcif/s,(2c/2c +1) ®py e R

New'fgo,’f/s, (2¢/2c¢+ 1)

[where ¢ > 1 is an integer|. Then in light of the above observations [together with
Propositions A.1, (iv); 3.3, (iv)], we conclude the following:

(A) The natural surjection of Il x-modules
New$s (b + 1/b+2) — New® (b+1/b+ 2)
admits a factorization
New§r (b4 1/b+2) — Newn /g/(b+ 1/b+2) - Newsr 5 (b+1/b+ 2)
— News' (b+1/b+2)

[via morphisms of IT x-modules]. Moreover, the natural action of A x, on the module
Newg s/(b + 1/b + 2) factors through the quotient Ax, — Gal(X"/X') — c-
Gal(X"”/X’) and determines on Newtso,f/s,(b + 1/b + 2) a structure of induced c -
Gal(X”/X")-module.
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(B) The induced morphism on A x/-invariants
New 5 (b4 1/b+2)2%" — NewS (b4 1/b+ 2)2x" = NewS (b + 1/b + 2)

of the [first] natural surjection of (A) factors, in a Il x -equivariant fashion, through
the endomorphism

New(y g/ (b+ 1/b+2) — Newr o (b+1/b +2)

[hence also through the endomorphism New's' (b + 1/b 4 2) — New'S (b + 1/b + 2)]
given by multiplication by the order of ¢ - Gal(X"/X").

Also, before proceeding, we make the following elementary observation con-
cerning the group cohomology of induced modules:

(C) Suppose that H"” = . A3, C A% where n” is a positive integer. For
M a finitely generated Z;-module [which we regard as equipped with the trivial
A x/-action], write:

Hx & HY (Ax, Mo M)

f
HX// d_e

H'(Axo, M@ MP) 2 HY (Ax, M[Gal(X"/X")] @ M)
Then the “trace map”
Try : Hx» — Hx

— i.e., the map induced by the morphism of coefficients M[Gal(X"/X")] - M
that maps each element of Gal(X”/X’) to 1 — factors through the endomorphism
of Hx given by multiplication by 1" [cf. Remark 3.9.2 below].

[Indeed, to verify (C), we recall that this trace map Try is well-known to be
dual [via Poincaré duality — cf., e.g., [FK], pp. 135-136] to the pull-back morphism;
we thus conclude that, relative to the natural isomorphisms Hx» — A%}),, ® M,
Hx: — A% ® M [arising from Poincaré duality — cf., e.g., Proposition 1.3, (ii)],
the trace map corresponds to the natural morphism

HX//:AaXb//(gMHAa/@M HX/

induced by the inclusion Ax» C Ax, — hence, by the definition of H”, factors
through the endomorphism of Hx: given by multiplication by ™" This completes
the proof of (C).]

Next, let us suppose that we have been given morphisms of (S, 0, X2)-admissible
coverings of X

111 %

X" X N —>XH* X/

111 % 117 % 11 %

and write U2), € X", Ugme C€X°, Ugne C X" for the open subscheme deter-

mined, respectively, by the complements of the sets $”, S*, S"" of closed points
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of X, X", X" that lie over points of S. Also, let us assume that the open sub-
groups AX/// g AX/, AX”’* g AX/, AX// g AX/, AX”* g AX/ arise, respectively,
from open subgroups

117 % 117 %

m _ '’ Aab _Jn . Aab ab
H —l AX//* g H —l AX”* g AX//*

17 % 17 %

H'=1"" . A%, C H =" A% C AP

1m11x def 1% def
— wheren = n"—¢, n = n” — ¢ we suppose that n””’ > 2¢, n” > c are

“sufficiently large” positive integers, to be chosen below. Then we wish to apply
the theory developed above [in particular, the observations (A), (B), (C)] by taking
“X” — X" in this theory to be various subcoverings of X" — X".

Now let us compute the cohomology of Ilx via the Leray spectral sequence

associated to the surjection IIx — IIx /A »«. Suppose that ¢ has been chosen so
that b4+ 1 = 2¢. Then by applying (A) to the covering “X” — X" (respectively,
“X" — X”*”), we conclude that Ay« (respectively, Ay/v«) acts trivially on
Nevvg?,f/su* (b4 1/b+ 2) (respectively, Newfgo,f,/su* (b+1/b+2)). Also, it follows
immediately from the definitions that we have a natural 1l x -equivariant surjection
NeWtSO,I;,/S//* b+1/b+2) — Newtscif/su* (b+1/b+2). Now, by applying (A) to the

117 %

covering “X” — X7 and (C) to the covering “X~ — X7, we conclude that

the Il x -equivariant natural morphism
HY (A, Newgy, qne (b+1/b+2)) — H'(Ayr-, Newg) o (b+1/b+2))

[which maps the image of ng to the image of ng~!| factors through a “trace
map” as in (C) for the covering “X X ”*”, hence in particular, through the

endomorphism of H'(A -, Newg?,’f/su* (b+1/b+2)) [a module whose submodule

of Il x-invariants is finite, by Proposition 3.4, (i)] given by multiplication by n |
in a Ilx-equivariant fashion. Thus, by taking n'” to be “sufficiently large”, we
conclude that the image of ns» in H (A i+, Newtso,f/s,/* (b+1/b+2)) is zero.

Now I claim that the image of ng~ in
H'(Ax/,Newg) /5, (b+1/b+ 2))
[obtained by applying the surjection
Newgi(b+1/b+2)) - Newgs g (b+1/b+ 2)

of (A) applied to the covering “X” — X'"”] is zero. Indeed, note that it follows im-
mediately from the definitions that we have a natural surjection Newgo,f /5" (b+1/b+

2) —» Newgoﬁ/s,(b + 1/b+ 2) [induced, in effect, by the inclusion Gal(X"” /X
Gal(X"”/X")]. Thus, since we have already shown that the image of ng~ in the co-

homology module H! (A .+, Newfs?,f/su* (b+1/b+2)) is zero, it follows immediately

that the image of ng in H'(A NeWE'C)/I;/S/(b + 1/b+ 2)) is zero, hence that the
image in question in the claim arises from a class

€ H'(Gal(X""/X"), (New§ /g (b+ 1/b+2))*x"")
= H'(Gal(X""/X"), New's} g/ (b+1/b+2)) =0

11 %

) —
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[where the last cohomology module vanishes since, by (A) applied to the covering
“X" — X, Newgo,‘;/s,(b +1/b+2) is an induced Gal(X"~/X')-module]. This
completes the proof of the claim.

Thus, in summary, we conclude that the image of ng» in the cohomology
module H'(IIy, Newfgoff/sl(b +1/b+ 2)) arises from a unique class in

H'(Ilx /Ax/, (New§) g (b+1/b+2))2x") 5 H'(ILx /Ax+, New§? /g, (b+1/b+2))
which maps to the unique class in
H' (I x /Ax:, NewS (b +1/b+ 2))

[a module which is finite, by Proposition 3.4, (i)] that gives rise to g via a mor-
phism that factors through the endomorphism given by multiplication by the order
of - Gal(X"/X") [cf. (A), (B) applied to the covering “X"” — X'”]. In particular,
by taking n” to be “sufficiently large”, we may conclude that ngs: = 0, as desired.
That is to say:

This completes the proof that the two inclusions HEZ — HgSRSHI differ

by conjugation by an element of Ker(HESRSbJrl — Hngngf),

In particular, the proof of assertions (i), (ii) is complete.

Next, we consider assertion (iii). First, let us observe that when b = 1, assertion
(iii) follows immediately from [the “pro-I version” of the argument applied to prove]
Proposition 2.6, (i) [cf. the discussion preceding Proposition 3.7]. Thus, in the
remainder of the proof of assertion (iii), we assume that b > 2. Note that since the
elements of Ker( 52“ —» Hﬁg) manifestly commute with the elements of I=0F1,
it follows from conditions (a), (b), the fact that b > 2, and the assumption that
S = S, is of cardinality one that 8 induces the identity on H§2+1[Csp] [cf. the proof
of assertion (ii) above]. Thus, to complete the proof of assertion (iii), it suffices to

show that the compatible system of classes
As: € HY (I x, Newg, (b + 1/b+ 2))

determined by [ [cf. Proposition 3.7, (i); 3.3, (iv)] vanishes. Note that since
(Ag?)ab is of “weight < 17, and Newg, (b + 1/b + 2) is of “weight b+ 1 > 37 [cf.
Proposition 3.4, (i)], it follows immediately from the Leray spectral sequence for
[Ix — G} that we have a natural isomorphism

HY(Gy, (Newg (b +1/b+2))2*) 5 H'(Ilx, Newg (b4 1/b+ 2))

[where the superscript “Ax” denotes the A x-invariants| and that the module
HY (G}, (Newg, (b + 1/b + 2))2x) is finite. Thus, to show that the A\g: = 0, it
suffices to show that the inverse limit

lim (Newg (b+ 1/b+ 2))2%
o
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[where X', S’ are as described in the proof of assertions (i), (ii)] is zero. But this
follows from observation (B) of the proof of assertions (i), (ii). This completes the
proof of assertion (iii).

Next, we consider assertion (iv). In light of the definition of HTOR<b+1 it suf-

fices to show that any compatible system of D x -invariant [relatlve to the diagonal
action of Dx| classes
ks € NewS (b+1/b+2)

[where X', S’ are as described in the proof of assertions (i), (ii)] lies in the image
of I, [Us] ® (Q;/Z;) if b = 1 and vanishes if b > 2. [Here, we note that since
Newd' (b + 1/b+2) = 0 when b is even, we may assume without loss of generality
that b is odd.] To do this, let X', X"/ S’ S” be as in (A), (B). Now we would like
to apply the theory of the Appendix [cf., especially, Theorem A.5] to the present
situation. To do this, it is necessary to specify the data “(i), (ii), (iii), (vi), (vii),
(viii), (ix), (x), (xi), (xii)” [cf. the discussion of the Appendix]| to which this theory
is to be applied.

We take the “d” of Theorem A.5 to be such that 2d = b+ 1 [so the fact that
b is odd implies that d > 2 whenever b > 2| and the prime number “I” of “(i)”
to be the prime number [ of the present discussion. We take the profinite group
“A” of “(ii)” to be the quotient of the group Ax by the kernel of the quotient
(Ax D) Axr — Aa Aa, ® Zy; this group “A” surjects onto Ax/Ax/, which
we take to be the quotient group “G” of “(ii)”, with kernel A% ® Z;, which we
take to be the subgroup “V” of “(ii)”. Here, we recall that the cond1t10n of “(ii),
(c)” concerning the regular representation follows immediately from [Milne], p. 187,
Corollary 2.8 [cf. also [Milne], p. 187, Remark 2.9], in light of our assumption that
X is proper hyperbolic, hence of genus > 2. We take the profinite group “I'” of
“(ix)” to be the image Gy C Gy, of IIx/ in Gy, [so “I'” acts naturally on “A”, “G”,
“H”]. Thus, “Ap” may be thought of as a quotient of Ilx X, Gy, hence also as
a quotient of Dx X, Gj. Note that by consideration of “weights”, it follows that

(New'S* (b + 1/b + 2))Cw

is finite, hence annihilated by some finite power of [, which we take to be the number
“N” of “(iii)”. We take the covering X” — X’ of (A), (B) to be any (S,0,X)-
admissible covering such that the resulting covering X% — XI::— is the covering
determined by the resulting subgroup “I"™ -V C A” [cf. the statement of Theorem
A.5], so “J” may be identified with Gal(X"”/X"). Next, we take the “G-torsor Eg”
of “(vi)” to be S" and the “H-torsor Ex” of “(vii)” to be S”; thus, the natural
surjection S” — S’ determines a surjection “Fy — Eg” as in “(viii)”. Note
that S” (respectively, S’) may be thought of as a Ay, -orbit (respectively, Ay, -
orbit) [via the action by conjugation] of the conjugacy class of subgroups of Ay
determined by I, [Us] € Ay,. In particular, it follows that the particular member
of this conjugacy class constituted by the subgroup I, [Us] C Ay, determines a
particular element ey € Ep (respectively, eq¢ € Eg) as in “(xi)”. Moreover, the
diagonal action of Dx — hence also of Dx Xg, G)» € Dx — on Ay, determines an
action of Dx X¢g, Gy € Dx on Ey, Eq that fizes ey, e, and [as is easily verified]



ABSOLUTE ANABELIAN CUSPIDALIZATIONS 73

factors through the quotient “Ar” of Dx X, Gi» — Illx X, Gy; in particular, we
obtain continuous actions of “Ap” on “Eg”, “Ef” as in “(x)”. Finally, we take
the “I-module A” of “(xii)” to be the d-th tensor power of M)((l) ® (Q/Z;). This
completes the specification of the data necessary to apply Theorem A.5.

Thus, by applying Theorem A.5 to the composite of the second and third
surjections in the factorization of (A), we conclude that since kg is Dx -invariant,
it follows that

Kgr € NeWEgO/I;(b + 1/b + 2)

maps to an element [i.e., kg/] of N - New'S (b4 1/b+ 2)%+ = 0 when b > 2 and to
an element [i.e., kg/] in the image of I, [Us] ® (Q;/Z;) when b = 1. This completes
the proof of assertion (iv).

Finally, we consider assertion (v). It is immediate from the definitions that
the various quotients in question are cuspidally pro-l. That these quotients are the
maximal cuspidally pro-l quotients follows from the construction of AE;O and the

easily verified fact that each AS? injects into Lin(AS% (1/00))(Q). Finally, the
S’ S’

asserted slimness follows from the fact that the profinite groups in question may

be written as inverse limits of profinite groups that admit normal open subgroups
: tr : 113 l 2 113 l 2 13 l 2 113 l 2
[with trivial centralizers] — namely, A;}S/ , (H(Uzs/)T , AEJ;,XX, , (H(Ul/xx/)T
— which are slim, by Proposition 1.8, (i), (iii) [which implies that the quotients
(1) ) (1)
AUX/><X/ - A){” (HUX’XX’
are slim]. O

)T (Hgl(),)T, as well as the kernels of these quotients,

Remark 3.9.1. Proposition 3.9, (iii), may be regarded as a “higher order, pro-l
analogue” of Proposition 2.6, (i).

Remark 3.9.2. It is important to note that if one omits [as was, mistakenly,
done in an earlier version of this paper| the hypothesis that Sy = (), then it no
longer holds that the image of the trace map “Try : Hx» — Hx/” [appearing in
the proof of Proposition 3.9, (i), (ii)] lies in {"™ - Hx/. Indeed, this phenomenon may
be understood by considering the trace map on first étale cohomology modules with
Zi-coefficients associated to the (™-th power map G, — G, on the multiplicative
group Gy, over k — a map which, as an easy computation reveals, is surjective.

We are now ready to prove the main technical result of the present §3:

Theorem 3.10. (Reconstruction of Maximal Cuspidally Pro-l Exten-
sions) Let X, Y be proper hyperbolic curves over a finite field; denote the
base fields of X, Y by kx, ky, respectively. Suppose further that we have been

given points z,. € X (kx), y. € Y(ky); write S ot {z.}, T oot {y«} Us oot X\S,
Vr def Y\T. Let ¥ be a set of prime numbers that contains at least one prime

number that is invertible in kx, ky; thus, ¥ determines various quotients Il
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x, Hyy, v, Uxxx, Oy, Iy, Oy, ., Oy xy [cf. Proposition 1.8, (iii); the dis-
cussion preceding Proposition 1.6] of the étale fundamental groups of Ug, X,
Uxxx, X xX, Vp, Y, Uyxy, Y XY, respectively. Also, we write llx — Gy,
Iy — Gy, for the quotients determined by the respective absolute Galois groups
Of kx, ky. Let

(0 HX :> Hy

be a Frobenius-preserving [hence also quasi-point-theoretic — cf. Remark
1.18.2] isomorphism of profinite groups that maps the decomposition group of x.
in Ilx [which is well-defined up to conjugation] to the decomposition group of y. in
IIy [which is well-defined up to conjugation]. Then for each prime l € ¥ such that
l # p, there exist commutative diagrams

<oo Qoo <oo <oo al, <oo

Us Vr Uxxx Uy xy
(6% aX o

Iy — Iy xxx — lyxy

— in which HUS _» H[%;)O’ HUXXX - HSOOX 1—IVT - H‘S/;O7 HUYXY - HSOO are
the maximal cuspidally pro-l quotients [cf. Proposition 3.9, (v)]; Uxxx =
Hx xay, x, Hyxy = Iy Xg, Iy the vertical arrows are the natural surjections;
oo, 0 are isomorphisms, well-defined up to composition with a cuspidally inner

automorphism, that are compatible, relative to the natural surjections

<oo c-ab,l, <oo c-ab,l | <oo c-ab,l, <oo c-ab,l
Us _»HUS ’ HUXXX _»HUXXX’ HVT HVT ’ HUYxY Uy xy

— where we use the superscript “c-ab,l” to denote the respective maximal cusp-
idally pro-l abelian quotients — with the isomorphisms
-ab ™~ Tyc-ab -ab ™~ yc-ab
M = s T S gk,
of Theorem 2.5, (i); Theorem 1.16, (iii), respectively. Moreover, a (Tespectively,
aX ) is compatible, up cuspidally inner automorphisms, with the decomposition

groups of x., Y, in H[%Soo, H‘S,;o (respectively, with the images of the decomposition

groups Dx, Dy in Hg;oxx, Hafoxy ). Finally, this condition of “compatibility with
decomposition groups”, together with the condition of making the above diagrams
commute, uniquely determine the isomorphisms s, @, up to composition with

a cuspidally inner automorphism; in particular, o, is compatible, up to compo-
<oo

sition with a cuspidally inner automorphism, with the automorphisms of g =~

H%;oxy given by switching the two factors.

Proof. TFirst, let us consider the isomorphism [i.e., more precisely: a specific mem-
ber of the cuspidally inner equivalence class of isomorphisms]

c-ab,l . Hc—ab,l ~ Hc—ab,l

« Uxxx Uy xy
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arising from the isomorphism Hi}ibxx = Hgi‘iy of Theorem 1.16, (iii). Recall
that since « is Frobenius-preserving, it is quasi-point-theoretic [cf. Remark 1.18.2],
and that 2! is compatible with the images of Dx, Dy, which we denote by
Dg?, D¥)~ Thus, we may assume without loss of generality that our choices of
decomposition groups D, [Us] C Ilyg, Dy, [Vr] C Ily,, as well as our choices of
splittings G, — Dy, [Us], G, — D,.[Vr], have images in II5;*>" | TI5*™! that

Uxxx’ l Uy xvy l
correspond via a®?P!. In particular, it follows that a®?P! maps Hg;b’ C H?}i‘i’x
. . c-ab,l c-ab,l
isomorphically onto IIy, ™ C II;7 7 .

In the following argument, let us identify the “Liny,(1/00)”, “Linx(1/00)”
portions of Alﬁf with the [completions, relative to the natural filtration topology,
of the] corresponding graded objects “Grg,(—)(1/00)” via the Galois invariant split-
tings of Proposition 3.4, (ii), and similarly for V. Then, in light of our assumption
that « is Frobenius-preserving, it follows immediately from the naturality of our con-
structions [cf., especially, Proposition 3.4, (iii)] that « induces, for each Z 50 > 1,
compatible isomorphisms

oLIE HI&ISE ~ H‘L/;E; QLIESD H%]ISESb ~ H%/ITEgb

which are, moreover, compatible [with respect to the natural projections to Il x, Iy |

with the isomorphism «. Moreover, it follows from the construction of “H(Li?gb”

that the latter displayed isomorphism maps DHES C HI&IESI’ bijectively onto
* s
DIy“*IESb C H%/ITESZ), and that the resulting isomorphism DEESI’ = DI?;*IESI’ induces
an isomorphism
<b ~ 1<b
which is compatible [again by construction!] with the respective Frobenius elements
“F}” on either side.

Next, let us observe that since the isomorphism a2 induces an isomorphism

Hg:b’l = Hf};b’l that is compatible with the images of the decompositions groups
D, [Us], Dy, [Vr] and Frobenius elements in these decomposition groups, it fol-
lows immediately that for corresponding [i.e., via o] (S, 0, X)-, (7T, 0, X)-admissible
coverings X' — X, Y’ — Y [which induce coverings Uy, — Us, Vpr — Vi,

~ab,l : . : Lie<2 ~ ALie<2 _ 1. . . .
o™l induces an isomorphism A= 5 Avf,_ which is compatible with o"F<2,
S/
Lie<2 A Lie<2 .
Moreover, although A;7=7, Avf,_ are not center-free, the semi-direct products
S/

ie< ie< . .
AII}I,:/—Q X Hx, A%/fl—Q X Hy are easily seen to be center-free [cf. Proposition 1.8,

(i)], for arbitrary open subgroups Hx C GLX, Hy C GZY [where the daggers are as
in Proposition 1.8, (i)] that correspond via «. Since H%]ISESZ (respectively, HI‘}ITESQ)
is an inverse limit of topological groups that admit normal closed subgroups of the
form All}zg x Hx (respectively, A%/TISQ x Hy ), we thus conclude [by applying the
extension “1 — (=) — Aut(—) — Out(—) — 1”7 of §0 to these normal closed sub-
groups| that the isomorphism H‘f}gb’l 5 H‘{};b’l induced by 2Pt
relative to the natural inclusions

is compatible —

Y

c-ab,l ~ <2 LIE<2, c-ab,l ~ <2 LIE<2
HUs - HUs < HUS HVT — HVT s HVT
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[cf. the discussion preceding Proposition 3.7] — with oMES2 HII}ISESQ 5 H‘L,ITES2
In fact, since 3 is odd, it follows immediately from the definitions that the
modules “New, (3/4)” vanish, hence [cf. Definition 3.5, (ii)] that we have an iso-
[[LIE<3 ~ [LIE<24
Us Us

morphism , which implies [cf. Proposition 3.7, (i)] that we have

an isomorphism ngjg = HISJ? [and similarly for V]. Thus, by Proposition 3.7, (iii),

c-ab,l

it follows that the isomorphism H‘;}:b’l 5 H%}j‘b’l induced by «a is compatible —

relative to the natural inclusions

c-abl ~ 11<3 LIE<3. c-ab,l ~ 11<3 LIE<3
HUS - HUS - HUS ) HVT - HVT HVT

. LIE<3 ~ LIE<
— with oE=3 . HUS <3 & qphIEss

Vr

Next, let us observe that the diagonal actions of Dx, Dy on Hng, H%,ITE clearly

factor through Dg? , D§9 [hence determine “diagonal actions” of Dg?, Dg) on H%ISE,

H{}ITE] Moreover, by what we have already shown concerning the compatibility of

aMES3 with ol [cf. also the compatibility of o' with Dg?, Dg)] and the
compatibility of a“*P! with the decomposition groups D, [Us], D, [Vr], it follows
[cf. Remarks 3.8.1, 3.8.2] that the conditions (a), (b), (c) of Proposition 3.8 are
compatible with o™ hence that a™F is compatible with the diagonal actions of
Dg?, Dg) on IIHE, TIYE [relative to the isomorphism Dg? 5 Dg) induced by

ac-ab,l]‘

Now I claim that the isomorphism o™=t maps H§2 bijectively onto H‘S,;, thus

inducing a compatible inverse system [parametrized by b] of isomorphisms

<b.1r<b ™~ r<b
o 'HUS_’HVT

that are compatible [with respect to the natural projections HEZ — Ilx, H‘%’ —»
IIy] with a. To verify this claim, we apply induction on b. The case b = 1 is
vacuous; the case b = 2 follows from what we have already shown concerning the
compatibility of oP=2 with a“?P!. Thus, we assume that b > 2, and that the
claim has been verified for “b” that are < the b under consideration.

Now observe that by Propositions 3.7, (iii); 3.9, (ii), it follows that the isomor-

phism
LIE<b+1 ~ {{LIE<b+1
HUS — HVT

maps Hég“ bijectively onto a Kelr(l_I‘L,;ESlH'1 —» H%/;Egﬂ)—conjugate of H‘S,T'l.

In particular, by conjugating by an appropriate element v € Ker(l’[l‘}ITESbJrl

LIE< . 4 .
1Ly, —b+), we obtain an isomorphism
T

i <btl ~ rr<btl
ﬁb—i—l : HUS - HVT

that is compatible with a=® and, moreover, [since v commutes with Iy%bﬂ] maps
TP bijectively onto I=P+!. Note that by Propositions 3.7, (i); 3.9, (iii), it follows
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that the choice of v is unique, modulo Ker( %H —» H%ﬁ). In particular, the

TOR<b+1 TOR<b+1

image 0 € II,, of v in IIy, is uniquely determined.

LIE is compatible with the diagonal actions of Dg?,

On the other hand, since «
Dg) on H%ISE, HLIE, it follows immediately, by “transport of structure”, that § is
fixed by the diagonal action of Dﬁ). But, by Proposition 3.9, (iv), this implies that
0 = 0. This completes the proof of the claim.

Thus, we obtain an isomorphism . : Hg;o 5 H‘S,;’o as in the statement of

Theorem 3.10. Next, let us recall that AE;X’, A‘g,:fo are slim [cf. Proposition 3.9,
(v)]. Thus, since this isomorphism «., is compatible with the diagonal actions of

Dg?, Dgf), we may apply the isomorphism Aut(A<°°) — Aut(A<;>°) induced by
Qs to obtain — i.e., by pulling back the extension
A > - Aut(A<°O) — Out(Aa?o) — 1

[cf. §0] via the homomorphism

(Dg? —») IIx — Out(Ag?)

arising from the diagonal action [and similarly for A‘gf;o] — an isomorphism a2}
HE;OXX HESJ;OXY as in the statement of Theorem 3.10. Here, we note that the

“cuspidally inner indeterminacy” of ao, X that is referred to in the statement
of Theorem 3.10 arises from the “cuspidally inner indeterminacy” in the choice of
corresponding decomposition groups D, [Us]|, D, [Vr| [more precisely: the images
of these groups in Hg HSOO as opposed to just in ITj; ab,! H%,ab ']. Finally, we ob-
serve that the asserted umqueness follows 1mmed1ately by considering eigenspaces
relative to the Frobenius actions [cf. Proposition 3.4, (ii)], together with the con-

struction of the isomorphism o' [cf. also Propositions 1.15, (i); 2.6, (i)]. O

Remark 3.10.1. The argument of the proof of Theorem 3.10 involving Proposi-
tion 3.9, (iv), may be regarded as a sort of “higher order analogue” of the argument
applied in the proof of Theorem 1.16, (iii), involving Lemma 1.11; Proposition 1.12,

(v).

Remark 3.10.2. At first glance, it may appear that the portion of Theorem 3.10
concerning o may only be concluded when X (kx), Y (ky) are nonempty. In fact,
however, since (Hézoxx)T, ( gioxy)T are slim [cf. Proposition 3.9, (v)], it follows
that the portion of Theorem 3.10 concerning o may be concluded even without
assuming that X (kx), Y (ky) are nonempty, by applying Theorem 3.10 after passing
to corresponding [via ] finite extensions of kx, ky [cf. Remark 1.10.1].

Remark 3.10.3. It seems reasonable to expect that, when, say, ¥ = {l}, the
techniques applied in the proof of Theorem 3.10, together with the theory of [Mtm],
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should allow one to reconstruct the [geometrically pro-X] étale fundamental groups
of the various configuration spaces [i.e., finite products of copies of X over kx,
with the various diagonals removed] “group-theoretically” from ITy [under, say, an
appropriate hypothesis of “Frobenius-preservation” as in Theorem 3.10]. This topic,
however, lies beyond the scope of the present paper.

Remark 3.10.4. If the “cuspidalization of configuration spaces” [cf. Remark
3.10.3] can be achieved, then it seems likely that by applying an appropriate “spe-
cialization” operation, it should be possible to generalize Theorem 3.10 to the case
where S, T' are subsets of arbitrary finite cardinality.

Remark 3.10.5. One essential portion of the proof of Theorem 3.10 is the Galois
invariant splitting of Proposition 3.4, (ii). Although it does not appear likely that
such a splitting exists in the case of a nonarchimedean local base field [cf., e.g., the
theory of [Mzk4]], it would be interesting to investigate the extent to which a result
such as Theorem 3.10 may be generalized to the nonarchimedean local case, perhaps
by making use of some sort of splitting such as the Hodge-Tate decomposition, or
a splitting that arises via crystalline methods. In the context of absolute anabelian
geometry over nonarchimedean local fields, however, such p-adic Hodge-theoretic
splittings might not be available, since the isomorphism class of the Galois module
“C,” is not preserved by arbitrary automorphisms of the absolute Galois group of
a nonarchimedean local field [cf. the theory of [Mzk3]].

The development of the theory underlying Theorem 3.10 was motivated by the
following important consequence:

Corollary 3.11. (Total Global Green-compatibility) In the situation of
Theorem 1.16, (iii) [in the finite field case], suppose further that X7 = Brimes ',
and that X, Y are ¥-separated [which implies that o is Frobenius-preserving
and point-theoretic — c¢f. Remarks 1.18.1, 1.18.2]. Then the isomorphism « is
totally globally Green-compatible.

Proof. 1Indeed, we may apply Theorem 3.10 to the isomorphism « of Theorem
1.16, (iii), and arbitrary choices of sets of cardinality one S = {z.}, T'= {y.} that
correspond via a. Let [ € 1. Then let us observe that the quotient Iy, —» Hg;’o
satisfies the following property:

If Iy, — @ is a finite quotient of I1;;, such that for some quotient @ — @’
whose kernel has order a power of [, Iy, — Q' factors through Iy, —

5‘5}0, then Iy, — @ also factors through Iy, — 5;0

A similar statement holds for the quotient IIy,. — H‘S/;O In light of this observation,

together with our assumption that X7 = ‘BtimesT [which implies that « is Frobenius-
preserving], it follows that the reasoning of [Tamal, Corollary 2.10, Proposition 3.8
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[cf. also Remark 1.18.2 of the present paper|, may be applied to the isomorphism

A
Oéoo. US VT

of Theorem 3.10 to conclude that the isomorphism ., maps the set of decompo-
sition subgroups of the domain bijectively onto the set of decomposition subgroups
of the codomain.

On the other hand, sorting through the definitions, the datum of the lifting of
a decomposition group of IIx, IIy corresponding to a point that does not belong
to S, T to a [noncuspidal] decomposition group of the domain or codomain of
Qo determines, by projection to H?}:b’l, H%};b’l, the [-adic portion of the Green’s
trivialization associated to this point and the unique point of S or T'. Since [ is an
arbitrary element of ¥1 = ‘BtimesT, and the points x,, y, are arbitrary points that
correspond via «, this shows that « is globally Green-compatible. That « is totally
globally Green-compatible follows by applying this argument to the isomorphism
induced by a between open subgroups of Il x, IIy. O

Theorem 3.12. (The Grothendieck Conjecture for Proper Hyperbolic
Curves over Finite Fields) Let X, Y be proper hyperbolic curves over a
finite field; denote the base fields of X, Y by kx, ky, respectively. Write Il x, 11y
for the étale fundamental groups of X, Y, respectively. Let

Oé:HXgHY

be an isomorphism of profinite groups. Then « arises from a uniquely deter-
mined commutative diagram of schemes

X =5 v
L
X = v

i which the horizontal arrows are isomorphisms; the vertical arrows are the pro-
finite étale universal coverings determined by the profinite groups I1x, Iy .

Proof. Theorem 3.12 follows formally from Corollaries 2.7, 3.11; Remarks 1.18.1,
1.18.2; Proposition 2.3, (ii). O
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Appendix: Free Lie Algebras

In this present Appendix, we discuss various elementary facts concerning free
Lie algebras that are necessary in §3. In particular, we develop a sort of “higher
order analogue” of the theory developed in Lemma 1.11.

Proposition A.1. (Free Lie Algebras) Let R be a commutative ring with
unity; V a finitely generated free R-module. Write Lier(V') for the free Lie
algebra over R associated to V; for Z. > b > 1, denote by Lieh (V) C Lieg(V)
the R-submodule generated by the “alternants of degree b” [cf. [Bour], Chapter I,
§2.6]. Also, we shall denote by Ur (V') the enveloping algebra of Lieg (V). [Thus,
we have a natural inclusion Lieg(V) — Ur(V').] Then:

(i) Each Lie% (V) is a finitely generated free R-module. Moreover, there is
a natural isomorphism V- = Lien (V).

(ii) Let v € V be a nonzero element such that the quotient module V/R -
v is free. Then the centralizer of v in Ur(V') is equal to the R-submodule of
Ur(V) generated by the nonnegative powers of v. In particular, if R is a field of
characteristic zero, then the centralizer of v in Lier(V') is equal to R - v.

(#ii) Suppose that the rank of V' over R is > 2. Then the Lie algebra Lieg(V') is
center-free. In particular, the adjoint representation of Lier(V') is faithful.

(iv) Let R' be an R-algebra which is finitely generated and free as an R-
module. Let ¢ : R' — R be a surjection of R-algebras; suppose thatV =V'®ps 4 R,
for some finitely generated free R'-module V' [so we obtain a natural surjection
V' — V' compatible with ¢]. Then the natural surjection V' — V induces a sur-
jection of R-modules Lie% (V') — Lie% (V) that factors as a composite of natural
surjections as follows:

Lieh (V') = Lieh, (V') — Lieh (V)

Here, the first arrow of this factorization is the arrow naturally induced by observ-
ing that every Lie algebra over R’ naturally determines a Lie algebra over R; the
second arrow of this factorization is the arrow functorially induced by the natural ¢-
compatible surjection V' — V. Finally, this second arrow induces an isomorphism

Lieh, (V) @p o R = Lieh(V).

Proof. Assertion (i) follows immediately from [Bour|, Chapter II, §2.11, Theorem
1, Corollary. Assertion (ii) follows from the well-known structure of the enveloping
algebra Ur(V') [i.e., the natural isomorphism of Ugr (V) with the free associative
algebra determined by V over R; the fact that when R is a field of characteristic
zero, the image of Lieg(V') in Ur (V') may be identified with the set of primitive ele-
ments — cf. [Bour|, Chapter II, §3, Theorem 1, Corollaries 1,2], by considering the
effect on “words” of forming the commutator with v — cf. the argument of [Mtm],
Proposition 3.1 [which is given only in the case where R is a field of characteristic
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zero, but does not, in fact, make use of this assumption on R in an essential way].
Assertion (iii) follows immediately from assertion (ii) [by allowing the element “v”
of assertion (ii) to range over the elements of an R-basis of V]. Assertion (iv) fol-
lows formally from the universal property of a free Lie algebra, together with the
well-known functoriality of a free Lie algebra with respect to tensor products [cf.
[Bour|, Chapter II, §2.5, Proposition 3|. O

Next, let us suppose that we have been given data as follows:

(i) a prime number l;

(ii) a profinite group A that admits an normal open subgroup V- C A such
that the following conditions are satisfied: (a) V' is abelian [so we shall
regard V' as a modulel; (b) the topological module V' is a finitely generated

free R-module, Where we write R & 7;; (c) the resulting action of the
finite group G % A /V on V determines a G-module VQz 'V ® Q that
contains the regular representation of G,

(iii) a positive power N of [;

(iv) a collection of [not necessarily distinct!] elements g1, ..., gq € G [where
d > 1 is an integer| of G at least one of which is not equal to the identity
element.

Write

D..

d
¢ES (1-g:) € RIG

=1

[where R[G] is the group ring of G with coefficients in R]. Then we have the
following result:

Lemma A.2. (Nontriviality of a Certain Operator) There exists an
integer n > 1 such that the order |J¢| of the image

Je CJ
of the action of ¢ on [the finite group] J v e (Z/I"Z) is divisible by N.

Proof.  Indeed, since the G-module Vp, contains the regular representation [cf.
condition (ii), (c)], it follows that the image of the action of ( on Vy, is a nonzero
Q;-vector space, hence that the image of the action of ( on the finitely generated
free R-module V' [cf. condition (ii), (b)] contains a rank one free R-module. Now
Lemma A.2 follows immediately. ()

Next, let Jo C J be as in Lemma A.2; write H def A/(I™-V) [soJ C H,
H/J = G]. Also, let us assume that we have been given data as follows:
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(v) a collection of elements hy, ..., hq € H that lift g1,..., g4 € G;

(vi) a G-torsor E¢ [whose G-action will be written as an action from the
left];

(vil) an H-torsor Ey [whose H-action will be written as an action from the

left];

(viil) a surjection
e: Fyg —» Eg

that is compatible with the natural surjection H — G|

(ix) a continuous action of a profinite group I' on A that preserves the sub-

group V' C A, hence determines a profinite group Ar 4f A % T that acts
continuously on GG, H [in such a way that the restriction of this action to
A C Ar is the action of A on G, H by conjugation];

(x) continuous actions of Ap on Eg, Ey [which will be denoted via super-
scripts] that are compatible with the continuous actions of Ar on G, H,
as well as with the surjection € and, moreover, induce the trivial action of
I' C Ar on Eg [hence also on GJ;

(xi) an element [i.e., “basepoint”| ey € Ep, whose image via € we denote by
eq € Fg, such that ey, eq are fized by the action of Ar on Fy, FEq.

Next, let us write
def

R; = R[J]
for the group ring of J with coefficients in R. Thus, R; is a commutative R-algebra,
and we have a natural augmentation homomorphism Rj; — R [which sends all of
the elements of J to 1]. Moreover, if we write

er s My ¥ RIEY] —» Mg ¥ R[EG]

for the morphism of R j-modules induced by € on the respective free R-modules with
bases given by the elements of Ey, Eq, then €); induces a natural isomorphism
My ®g, R = Mg. Thus, it follows from Proposition A.1, (iv), that, for b > 1 an
integer, we have [in the notation of Proposition A.1] natural surjections

Liel (M) — Liely (Mp) — Lieh (M)

the second of which determines a natural isomorphism Siell’%(] (Mp)®gr, R Lieh(Mg).

Now let
P(Xlu"' 7Xd)
be an “alternant monomial of degree d” [i.e., a monomial element of £ieZ(—) of
the free Z-module on the indeterminate symbols X1, ..., X;] in which each X; [for
i=1,...,d] appears precisely once. Then P(Xy,...,X ) determines an element

P(gl'eGa"'7gi'eG7"'7gd'eG)



ABSOLUTE ANABELIAN CUSPIDALIZATIONS 83

of Lielh (Mg). Moreover, by allowing such P(X1, ..., Xy) and g1, ... , gq to vary ap-
propriately, we obtain a Hall basis [cf., e.g., [Bour|, Chapter II, §2.11] of SiedR(Mg)
[at least if d > 2; if d = 1, then one must also allow for the unique g; to be the
identity element]. Similarly, by allowing such P(Xi,...,Xy4) and hq,... hg € H
to vary appropriately, we obtain a Hall basis [again, strictly speaking, if d > 2] of
Sief.l%J(MH) of elements of the form P(hy-eqy,... , hqg-em).

Lemma A.3. (Relation of Superscript and Left Actions) For any
veV CACAr that maps to j € J, we have

P(hi-em,... hi-em,... ha-en)’ =(() - Plh1-en,... ,hi-em,...  ha en)

in Lie, (Mp).

Proof. Indeed, we compute:

P(hl-eH,...,hi-eH,...,hd-eH)”:P(hzl’-eH,...,hf-eH,...,hZ-eH)

=Py -hi' hy-emg, ... BY bt hicem, ... hY byt hg-ep)

d

= (H [jahi]>'P(h1'€H:---ahi'eHa---ahd‘eH)
i=1

:C(j)-P(hl-eH,...,hi-eH,...,hd-eH)

[where we apply the Rj-module structure of Ex and the fact that e}, = ey [cf.

D]l O

Next, let us assume that we have also been given the following data:

(xii) a topological R-module A equipped with a continuous action by I' [which

thus determines, via the natural surjection Ar — I', a continuous action
by Ar on Al.

Write:

Ve ¥V T C A

Fy ¥ g Phy-en,... ,ha-en) C Lieh (Mp);

RIFJ) Y R-Fy =Ry P(hy-en,... ha-en) C Sieh (Mpy);

A[F;) € RIF)] ®g A C Lieh (My)p; A

def .
F = P(gl CeG, -5 0d eg> S Qle%(Mg);

def

L R.FCgiedh(Mg); AF) Y RIF)|or A C Liek(Mg) ®r A

R[F] %

Thus, the natural surjection Lie% (Mp) — Lie% (M) determines [compatible] nat-
ural surjections Fy — {F'}, R[F;] — R[F], A[Fj] — A[F]. Also, we observe [cf. the
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fact that QiedRJ (Mp) is a finitely generated free Rj-module] that Fj is a J-torsor
[relative to the action from the left], hence, in particular, a finite set.

Now observe that since Vp acts trivially on G, ey [cf. (ix), (x), (xi)], it follows
immediately that Vi acts compatibly on Fy, R[F;|, A[F;], F, R[F], A[F], and that
the natural action of Vp on R[G] preserves (. In particular, it follows that Vp
preserves Jo C J, hence that Vr acts naturally on the set of orbits

(Fy —) F¢
of F); with respect to the action of J¢; moreover, by Lemma A.3, it follows that
this action of Vr on F¢ factors through the quotient Vp — T
Now let us consider invariants with respect to the various superscript actions
under consideration. Let us write

Invar(—, —)

for the set of invariants of the second argument in parentheses with respect to the
superscript action of the group given by the first argument in parentheses. Then
any element

n € Invar(Vp, A[F)])

may be regarded as a A-valued function on the set F; which descends [cf. Lemma
A.3] to a I'-invariant A-valued function on Fy, i.e., an element 7, € Invar(I", A[F;]).
Next, let us observe that [since 7, is I'-invariant] the sum of the values € A of the A-
valued function on Fy determined by 7 is a I'-invariant element [ 1. € Invar(T, A).

Thus, the sum
/ neAi

of the values € A of the A-valued function on F; determined by 7 satisfies the

relation
/77=|J<|'/ ne

in A. But the image of  in A[F] is precisely the element ([ n)- F. Thus, since, by
Lemma A.2, |J¢| is divisible by N, we conclude the following:

Lemma A .4. (Monomial-wise Computation of Invariants) The image
Im(Invar(Vr, A[F])) € A[F]

of Invar (Vr, A[F;]) € A[Fy] in A[F] lies in N - Invar(T, A[F]).

Thus, by allowing P(X1,...,Xy) and hq,...,hqy € H as in the above discus-
sion to vary appropriately so as to obtain a Hall basis [again, strictly speaking, if
d > 2] of Sie%J (Mp) of elements of the form P(hy - ep, ..., hq-eq), we conclude
the following:



ABSOLUTE ANABELIAN CUSPIDALIZATIONS 85

Theorem A.5. (Invariants of Free Lie Algebras) Let d > 1 be an integer.
Suppose that we have been given data as in (i), (ii), (iii) above. Let n > 1 be

an integer that satisfies the property of Lemma A.2 for all [of the finitely many/

possible choices of data as in (iv) [relative to the given integer d > 1]; J def v/ -

V) CH &t A/(I™-V); Ry & R[J]. Suppose that have also been given data as

in (vi), (vii), (viii), (iz), (z), (zi), (wii) above; let My 2 R[Eg], Me ¥ R[Eq),
Ve @y o« (C Ar). Then the natural surjection

SiQ%J (MH) Qr A — Ele%(Mg) Qr A

maps
Invar(Vr, Sieﬁl;“ (Mpg) ®@r A)

mnto

N - Invar(Vp, Lieh(Ma) @ A)

if d > 2. In a similar vein, the natural surjection My @r A - Mg ®@r A maps
Invar(Vp, Mg @ A) into N - Invar(Vr, Mg @z A) + Invar(Vp, A) - e € Mg ®p A.
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